
Counting the Uncounted
Methodological Extensions in Multiple Systems Estimation

Enkele Uitbreidingen in Multiple Systems Estimation
(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit Utrecht

op gezag van de
rector magnificus, prof.dr. H.R.B.M. Kummeling,

ingevolge het besluit van het college voor promoties
in het openbaar te verdedigen op

vrijdag 22 november 2024 des ochtends te 10.15 uur

door

Daan Bernardus Zult

geboren op 7 oktober 1979

te Hoorn



Promotoren:
Prof. dr. P.G.M. van der Heijden
Prof. dr. B.F.M. Bakker

Beoordelingscommissie:
Prof. dr. K. van Deun
Dr. P.J. Lugtig
Prof. dr. D.L. Oberski
Prof. dr. B. Schouten
Prof. P.A. Smith



To Sylvia, Olav and Nova, I am so lucky to have you in my life!



Zeg, zal ik je eens even wat vertellen

Zeg, zal ik je eens even wat vertellen
De grote mensen – ook al is dat raar
Die denken dat ze alles kunnen tellen
Maar weet je – dat is helemaal niet waar

Vraag ze hoeveel sprietjes je kunt vinden in het gras
Vraag ze hoeveel druppels je kunt vangen in een glas
Vraag ze hoeveel sterren boven aan de hemel staan
En hoeveel mensen snurken als ze ’s avonds slapen gaan.

Zeg, zal ik je eens even wat vertellen
De grote mensen – ook al is dat raar
Die denken dat ze alles kunnen tellen
Maar weet je – dat is helemaal niet waar

Ieniemienie - Sesamstraat, Vriendjes voor altijd (2007).

The writing of this dissertation was supported by Statistics Netherlands, but respon-
sibility of the views expressed as well as errors or omissions made, belong solely to
the author(s), and do not reflect the views of Statistics Netherlands.



Contents

1 Introduction 1
1.1 The basics of multiple systems Estimation . . . . . . . . . . . . . . . . . 3
1.2 Topics and main conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Open questions and further research . . . . . . . . . . . . . . . . . . . . 7

2 Bias correction in multiple systems estimation 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Dual-system estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 The Lincoln-Petersen estimator and the log-linear model . . . . 12
2.2.2 Distributional assumptions . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Bias reduction in dual-system estimation . . . . . . . . . . . . . 14
2.2.4 Dual-system estimation simulation study . . . . . . . . . . . . . 16

2.3 Multiple systems estimation . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 The Chapman MSE-estimator for saturated models . . . . . . . . 22
2.3.3 A generalisation of the Chapman MSE-estimator towards re-

stricted models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Example: Number of homeless people in the Netherlands . . . . . . . . 30
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.1 Comparison of Taylor approximation and Stephan’s inverse fac-
torial approximation . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.2 Second-order Taylor approximation of the Lincoln-Petersen-
estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.3 Tables with SEs and RMSEs . . . . . . . . . . . . . . . . . . . . . 38

3 Connecting Correction Methods for Linkage Error in Capture-Recapture 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 General setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Capture-recapture with two registers . . . . . . . . . . . . . . . . 44
3.2.2 Probabilistic record linkage . . . . . . . . . . . . . . . . . . . . . 45

3.3 Estimation of the population size . . . . . . . . . . . . . . . . . . . . . . 46
3.3.1 No linkage error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 One way correction (OC) . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Symmetric two-way correction (SC) . . . . . . . . . . . . . . . . . 48
3.3.4 Asymmetric two-way correction (AC) . . . . . . . . . . . . . . . . 49

i



CONTENTS

3.3.5 Linking the correction methods . . . . . . . . . . . . . . . . . . . 50
3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.1 Sets defined in the setting of probabilistic record linkage . . . . 57
3.6.2 Admissibility of asymmetric two-way correction estimators p̂i . 57
3.6.3 Enforcing one-to-one linkage . . . . . . . . . . . . . . . . . . . . 59
3.6.4 Estimation of the matching probabilities using logistic regression 60

4 A General Framework for Multiple-Recapture Estimation that Incorporates
Linkage Error Correction 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Notation and an illustration of linkage errors . . . . . . . . . . . . . . . 66

4.2.1 Linkage with perfect identifiers . . . . . . . . . . . . . . . . . . . 66
4.2.2 Linkage without perfect identifiers . . . . . . . . . . . . . . . . . 67
4.2.3 Records and cell counts . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.4 An illustration of source linkage, linkage errors and the contin-

gency table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Linkage error correction in capture - recapture estimation . . . . . . . . 69

4.3.1 Relation between the basic dual – system and the log – linear
Poisson regression model . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Impact of linkage errors on the dual - system model . . . . . . . 70
4.4 The D&F and D&F+ model . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Further simplification of the D&F+ model . . . . . . . . . . . . . 72
4.4.2 Covariates in the D&F+ model . . . . . . . . . . . . . . . . . . . . 73
4.4.3 Additional sources in the D&F+ model:

The weighted multiple-recapture model . . . . . . . . . . . . . . 74
4.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.1 Simulation study setup . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7.1 numerical calculation example . . . . . . . . . . . . . . . . . . . 79
4.7.2 Setup of the simulation study . . . . . . . . . . . . . . . . . . . . 80

5 From Quarterly to Monthly Turnover Figures Using Nowcasting Methods 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Notation benchmarking models and nowcasting models . . . . . . . . . 87

5.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.2 Benchmarking models . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.3 Nowcasting models . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ii



CONTENTS

5.2.4 Evaluation method . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Empirical evaluation of the nowcast models . . . . . . . . . . . . . . . . 95

5.3.1 Time series data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.2 Nowcast model performance before and during a crisis . . . . . 97
5.3.3 Nowcast model performance after a crisis . . . . . . . . . . . . . 99

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Nowcasting in triple-system estimation 109
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Theory and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.1 Dual-system estimation . . . . . . . . . . . . . . . . . . . . . . . 111
6.2.2 Triple-system estimation . . . . . . . . . . . . . . . . . . . . . . . 112
6.2.3 Combining samples over two periods. . . . . . . . . . . . . . . . 113

6.3 Combining DSE and TSE with the EM algorithm . . . . . . . . . . . . . 115
6.4 Nowcasting the number of homeless people in The Netherlands . . . . 117

6.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

References 125

Acknowledgements 137

iii





Chapter 1

Introduction

How to count the uncounted? This question can be interpreted both literally and
figuratively. First, how to count those that literally cannot be counted, simply because
they are unobserved? Second, how to count those who figuratively do not seem to
count, such as marginalised or hard-to-reach groups? Multiple Systems Estimation
(MSE), a statistical model that is designed to deal with both cases, is the main topic of
this dissertation.

The traditional MSE setting is the literal case, where a population of interest is not
fully observed by one complete list that contains one record for each population unit,
but by two or more samples that each contain a different subset of this population.
Then some population units may be present in one or more samples and some may not
be present in any of the samples at all. MSE is designed to provide an estimate for this
missing part. This traditional setting mainly stems from the field of ecology, where the
estimation of the size of animal populations plays a major role (see e.g. Petersen, 1896;
Lincoln, 1930). This setting may also arise in human populations when individuals
are not accurately administered, therefore MSE is nowadays also applied by National
Statistical Institutes (NSIs) to estimate the so-called undercoverage of their census (see
e.g. Hogan, Cantwell, Devine, Mule, & Velkoff, 2013; Wolter, 1986) or person register
(see e.g. Bakker, van Rooijen, & van Toor, 2014; Statistic Netherlands, 2016; Bakker,
van der Heijden, & Gerritse, 2017).

The second case of marginalised or hard-to-reach groups starts from a broader in-
terpretation of being uncounted, because it also concerns the case where a complete
list or register of the population may be available, but some information of interest
is missing. An illustrative example of such a case that plays an important role in this
dissertation, is the question of how many people in The Netherlands are homeless (see
also Coumans, Cruyff, van der Heijden, Wolf, & Schmeets, 2017)? Similar cases of the
use of MSE to estimate the size of hard-to-reach groups can be found in epidemiol-
ogy, where MSE is used to estimate how many people or animals carry some sort of
disease (see e.g. Gill, Ismail, Beeching, Macfarlane, & Bellis, 2003; Muneza et al.,
2017; Böhning, Rocchetti, Maruotti, & Holling, 2020) or use some sort of drug (see e.g
White, Bird, & Grieve, 2014). Also in the domain of public policy and human rights
research (see e.g. Lum, Price, & Banks, 2013), MSE is used to estimate the number
of war casualties (see e.g. Manrique-Vallier, Price, & Gohdes, 2013), the number of
people that are a victim of human trafficking (see e.g. UNODC, 2022), forced labour
(see e.g. Belser, de Cock, Mehran, & ILO, 2005; ILO, 2018) or modern slavery (see e.g.
Silverman, 2020; Binette & Steorts, 2022). In van der Heijden et al. (2021) it is used
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1. Introduction

to estimate the size of the Māori population in New Zealand, in Yauck, Rivest, and
Rothman (2019) it is used to estimate the number of visitors to a business location
and Fienberg, Johnson, and Junker (2002) even use it to estimate the size of the World
Wide Web. A wide overview of some of these and other applications are discussed in
International Working Group for Disease Monitoring and Forecasting (1995b); Bird
and King (2018).

As Chao (2015) writes, the basic idea of MSE with two samples can be traced back
to a 1786 paper by Pierre Simon Laplace, who used it to estimate the population
size of France in 1802 (Cochran, 1978; Seber, 1982), and even earlier to John Graunt
who used the idea to estimate the effect of plague on the population size of England
around 1600 (Hald, 1975). The theoretical development that led to modern MSE the-
ory, took off in the field of ecology with the work of Petersen (1896); Lincoln (1930)
and Schnabel (1938). It became more generally known and more widely applicable
due to the work by Sekar and Deming (1949), who used it to estimate the size of a hu-
man population. Jolly (1965) and Seber (1965) proposed their Jolly-Seber model for
populations that could be subject to events such as death, birth and migration. Later,
Bishop, Fienberg, and Holland (1975) strengthened its theoretical foundation further
by establishing a link between MSE and the log-linear model. A discussion of the re-
lation between the model and underlying assumptions was provided by e.g. Wolter
(1986), who extensively discussed the relation between the two sample estimator and
its underlying assumptions. A more comprehensive description of the history of MSE
and its theoretical development can be found in a paper by the International Working
Group for Disease Monitoring and Forecasting (1995a).

Over time, MSE became known under different names that all refer to the same
method. The name that is used generally may depend on the number of samples that
is involved and on the scientific field in which it is discussed. When two samples
are involved, in ecology the method is usually referred to as Capture-recapture (see
e.g. Amstrup, McDonald, & Manly, 2005) or Mark-recapture (see e.g. McClintock,
Conn, Alonso, & Crooks, 2013). In other fields it is also referred to as Dual-system
estimation (see e.g. Cantwell, 2014). When there are k > 2 samples, also the name
Multiple-recapture (see e.g. Darroch, 1958; Cormack, 1989) estimation is encoun-
tered and when there are exactly three samples involved the method may be called
Triple-system estimation (see e.g. Zaslavsky & Wolfgang, 1993; Baffour, Brown, &
Smith, 2013). In the different chapters of this dissertation these different names are
used somewhat interchangeably.

Despite its long history in scientific literature, MSE still faces some unresolved
theoretical and practical problems. These issues also play a role in the practice of
producing population size statistics at Statistics Netherlands, which is the driving
force behind the work presented in this dissertation. These issues are of a general
nature and may therefore be interesting to any MSE practitioner. In the remainder
of this introduction we discuss some of these unresolved theoretical and practical
MSE issues, and explain how they are related to the different chapters. Before we can
discuss these relations, we first need to introduce some of the methodological basics
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1.1. The basics of multiple systems Estimation

of MSE. Finally, this chapter summarises the conclusions of the different chapters,
discusses open issues and suggests some further research.

1.1 The basics of multiple systems Estimation

The basic idea of MSE is that the size of a population can be estimated by combin-
ing different samples from this population. This idea can be most clearly illustrated
by discussing in some further detail the simple case of a population that is partly
observed by two samples that we will refer to as dual-system estimation (DSE). DSE
assumes a population with size N and two samples A and B that each contain a ran-
dom sample from this population. It is assumed that each population unit can be
perfectly identified and therefore it is possible to count the number of unique popu-
lation units in sample A, the number of unique population units in sample B and the
number of unique population units in both samples. These counts can be denoted as
nab with a ∈ (1,0,+) where a = 1 means in sample A, a = 0 means not in sample A and
a = + means both in and not in sample A, and the same for b. This notation gives n1+ as
the size of sample A, n+1 as the size of sample B and n00 as the unobserved part of the
population. These counts can be presented more schematically as in Table 1.1.

Table 1.1: Illustration of the problem with two samples

Sample A \ Sample B in B not in B both in and not in B
in A n11 n10 n1+
not in A n01 n00 =? ?
both in and not in A n+1 ? N

Table 1.1 shows that if n00 is known, then N = n11 +n10 +n01 +n00 would be known
as well. Of course, the problem is that n00 is not observed. Table 1.1 suggests some
intuition of how n00 may be estimated as well. When it is assumed that the probability
of a population unit being included in sample A is independent of this unit being
included in sample B, Table 1.1 suggests that the ratio n11/n01 in the first column
should, on average, be approximately equal to the ratio n10/n00 in the second column.
When we consider n00 to be a random variable with expectation m00, this reasoning
directly suggests a DSE-estimator for m00 that can be written as

m̂LP
00 = n10n01/n11. (1.1)

This DSE-estimator was already proposed by Petersen (1896), and later Lincoln
(1930), and is therefore also often referred to as the Lincoln-Petersen (LP) estima-
tor. Later, Chapman (1951) introduced an alternative but very similar DSE-estimator,
i.e.:

m̂
Chapman
00 = n10n01/(n11 + 1), (1.2)

3



1. Introduction

which has better small sample properties.
An important role in much of the work presented in this dissertation is related

to the work by Fienberg (1972), who showed that MSE-estimators and therefore also
DSE-estimators can be obtained from a log-linear model. For the LP-estimator this
starts with the log-linear model equation

logmab = λ+λA
a +λB

b +λAB
ab , (1.3)

with mab the expectation of nab, λ an intercept term, λA
a and λB

b are the respective
inclusion parameters for sample A and B that are identified by setting λA

0 = λB
0 = 0

and λAB
ab is a parameter for the interaction between sample A and B. For m00 this

reduces to m00 = expλ. Because m00 is unobserved it is usually assumed that λAB
ab = 0.

Then, Eq. (1.3) reduces to three equations and three unknowns that, when solved for
λ, give the LP-estimator in Eq. (1.1).

The assumptions under which m̂LP
00 is an asymptotically unbiased estimator are

discussed by Wolter (1986); International Working Group for Disease Monitoring and
Forecasting (1995a); Zhang (2019) and others. We will briefly discuss them here as
well, because they lead to the topics dealt with in the chapters of this dissertation.
The four assumptions can be outlined as follows:

1. The sampling population is equal for both samples.

2. In each sample, population units can be perfectly identified.

3. Inclusion probabilities are homogeneous in at least one of the samples.

4. The samples are independent.

When each of these assumptions hold and the samples are of sufficient size (i.e. when
n1+n+1/N > logN , (Chapman, 1951), which could be seen as a fifth assumption or a
regularity condition), one can apply DSE without too much concern. When one of
these assumptions is violated and not taken into account appropriately, both the LP-
and Chapman-estimator will be biased.

Whether and which of these assumptions is violated depends on the application.
When DSE is applied on data available to a NSI, it is very common that both DSE as-
sumption 3 and 4 are violated. Assumption 3 is often unlikely to hold, because in pub-
lic administration inclusion probabilities generally differ between different groups.
For example, older people have a larger probability to be included in a hospital reg-
ister, while younger people have a larger probability to be included in an education
register. A standard way to deal with these different probabilities is to add categorical
covariates to the model. For example, one may construct Table 1.1 for young and old
people separately and estimate an m00 for each group. Another way that leads to the
same result is to add categorical covariate parameters to the log-linear model.

Assumption 4 is also often violated, simply because a person being included in
one register may affect the probability that this person is included in another register.

4



1.2. Topics and main conclusions

This might be due to some unobserved personal factor that increases the probabil-
ity of a person being (or not being) registered in any register, but also due to ad-
ministrations that use the other register to improve their own coverage. With ani-
mal populations, the correlation between samples is often explained by animals that
after being trapped, become either more “trap happy” or more “trap shy”. In the
context of Eq. (1.3), this implies that the assumption λAB

ab = 0 is violated and so
m00 = expλ no longer holds. A standard solution to this violation of the indepen-
dence assumption 4, is to use more than two samples (Fienberg, 1972). For example,
when three sample A, B and C are available, the number of observed counts is seven
(n111,n110,n101,n011,n100,n010 and n001), which allows the log-linear model to be ex-
tended to:

logmabc = µ+µAa +µBb +µCc +µABab +µACac +µBCbc . (1.4)

Eq. (1.4) consists of seven equations and seven parameters. It does not contain µABCabc ,
because for identification it is assumed that µABCabc = 0. The main feature of Eq. (1.4)
as compared to Eq. (1.3), is that the interaction parameters µABab , µACac and µBCbc can also
be estimated, hereby controlling for pairwise sample dependencies. When more than
three samples are available, Eq. (1.4) can be extended further in a straightforward way.
The same holds for categorical covariates, which can also be easily incorporated in Eq.
(1.4). In this way the log-linear model provides a method to control for violations of
both assumption 3 and 4 simultaneously. However, by extending the DSE model this
way, a few additional issues are to be considered, which we will discuss in more detail
in the next section, because they are related to the chapters in this dissertation.

1.2 Topics and main conclusions

This dissertation contains five main chapters. Four chapters are directly related to
different methodological issues in MSE, and in a fifth chapter a large set of so-called
nowcasting models that can also be applied to improve MSE estimates are discussed
and compared. Each chapter in this dissertation was originally written as an indepen-
dent article and therefore each chapter can be read independently. It is also important
to note that the mathematical notation may differ to some degree between chapters
because the notation is customised to each chapter.

The extension of DSE with additional samples and covariates to control for viola-
tions of DSE assumptions 3 and 4, is in different ways related to each of the chapters.
A first issue that is introduced by this extension, is the increase of finite-sample bias
that is caused by the decreasing value of the count variable nab with each split-up.
In DSE the Chapman-estimator is available to improve the small-sample properties,
but with multiple samples this solution is not available. This problem is discussed
in Chapter 2 (see also Zult, van der Heijden, & Bakker, 2023). In this chapter a new
estimator, the Chapman MSE-estimator, is proposed. This estimator is obtained by
modifying the observed counts (e.g. nabc in case of three samples) before estimation
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1. Introduction

is performed. This modification can be found in Eq. (2.32). This new estimator ex-
tends the Chapman-estimator in Eq. (1.2) towards multiple samples and categorical
covariates, and outperforms other finite-sample bias reduced estimators that can be
found in literature (i.e. Bailey, 1951; Evans & Bonett, 1994; Rivest & Lévesque, 2001;
Cordeiro & McCullagh, 1991; Firth, 1993; Kosmidis, 2007; Kosmidis & Firth, 2011) in
a series of simulation studies. This new Chapman MSE-estimator is also used to esti-
mate the number of homeless people in The Netherlands, and in a comparison with
the regular MSE estimates it shows substantially different results.

A second additional issue that is introduced by extending DSE with additional
samples and/or categorical covariates is that it becomes unclear how to correct for
bias due to a violation of assumption 2. Imperfect identification of population units
leads to imperfect linkage and therefore to incorrect counts for n11, n10 and n01 and
consequently to a biased estimate for m00. Ding and Fienberg (1994) and later Di
Consiglio and Tuoto (2015) propose a DSE linkage-error corrected estimator. The ba-
sic idea behind this estimator is that if an audit sample is available that can be linked
both probabilistically (see Fellegi & Sunter, 1969) and deterministically, the probabil-
ities of missed links and false links can be estimated and these probabilities can be
used to correct the population size estimate for linkage errors. However, it is unclear
how this estimator can be extended towards multiple samples and/or covariates. This
problem is dealt with in Chapter 3 and 4. In Chapter 3 a new linkage-error corrected
DSE-estimator is proposed (see also de Wolf, van der Laan, & Zult, 2019) that is a
generalisation of the estimator by Di Consiglio and Tuoto (2015), because in contrast
to the estimator by Di Consiglio and Tuoto, it allows for samples of different sizes.
Furthermore, in de Wolf et al. (2019) it is shown that this new linkage-error corrected
estimator has an expectation that is equal to the expectation of the LP-estimator in
Eq. (1.1). This result is used in Chapter 4, where the linkage-error corrected DSE-
estimator in de Wolf et al. (2019) is further generalised towards MSE. This leads to a
new linkage-error corrected MSE-estimator that we refer to as the weighted multiple
- recapture (WMR) estimator. The basic idea behind the WMR-estimator is that the
same audit sample that was assumed available with the other linkage-error corrected
estimators, can also be used to create record-level weights. Summing up over these
weights gives modified observed counts (e.g. nabc in case of three samples) that can be
used in the log-linear model to obtain a linkage-error corrected estimate for the size
of the population. For two samples this new approach leads to the same linkage-error
corrected estimator as derived in de Wolf et al. (2019), while it can be extended to-
wards any number of samples in a fairly easy way. In a series of simulation studies it
is shown that the WMR-estimator provides asymptotically unbiased estimators under
different scenarios (see also Zult, de Wolf, Bakker, & van der Heijden, 2021).

Finally, a third additional issue that is introduced by extending DSE with addi-
tional samples, is that the use of additional samples may reduce the speed with which
an estimate can be obtained, simply because some additional samples may become
available later. This problem is discussed in Chapter 5 and 6. Both chapters discuss
so-called nowcasting models, which are time series models that have the purpose of
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obtaining an estimate for the current or most recent state of the time series. They are
based on historic time series data and may be complemented with a subset of data that
is available for the most recent period. Chapter 5 discusses a large set of nowcasting
models that can be used to obtain a MSE-nowcast when a long enough time series of
MSE-estimates would be available. Because such a (long enough) times series of MSE-
estimates was not available, in Chapter 5 these nowcasting models are compared with
the help of turnover data of companies in different economic sectors, for which much
more and longer time series data is available (see Zult, Krieg, Schouten, Ouwehand,
& van den Brakel, 2023). Finally, in Chapter 6 a new nowcasting model, designed
specifically for MSE, is proposed. The idea behind this new model is to estimate Eq.
(1.4) for the most recent period, by combining the most recent samples with samples
from older periods with the help of the EM algorithm (see e.g. Dempster, Laird, &
Rubin, 1977). This chapter discusses under which assumptions this model provides
asymptotically unbiased population size estimates, and it is applied on the number of
homeless people in The Netherlands, for which it shows reasonable results.

1.3 Open questions and further research

In Chapter 2 the properties of the new Chapman MSE-estimator are analysed both
mathematically and in simulation studies. These analyses show that the Chapman
MSE-estimator provides asymptotically unbiased population size estimates for a se-
lection of MSE models, but neither approach provides complete proof in the sense
that it shows that the Chapman MSE-estimator gives an asymptotically unbiased pop-
ulation size estimate for any possible MSE model. Such a complete proof is beyond
the scope of this dissertation, but would be a valuable and welcome result of future
research.

The excellent performance of the Chapman MSE-estimator compared to the stan-
dard MSE-estimator, as shown in Chapter 2, raises the question whether finite-sample
bias correction should not become the standard approach in any work in the field of
MSE research. Also, because it comes at almost no costs to researchers (see also Rainey
& McCaskey, 2021). This will affect MSE estimates, and therefore also more general
discussions, such as discussions on MSE model selection (e.g. in Silverman, 2020;
Silverman, Chan, & Vincent, 2023; Binette & Steorts, 2022). For example, an interest-
ing question would be if correcting for bias may also lead to the selection of different
models.

The new linkage-error correction estimators in Chapter 3 and 4 are extensions of
the linkage-error correction estimators by Ding and Fienberg (1994) and Di Consiglio
and Tuoto (2015). One of the problems with all these estimators, is that they rely on
the probabilistic linkage method by Fellegi and Sunter (1969) and the availability of
so-called audit samples, which are sub-samples for which both probabilistic and per-
fect linkages based on a clerical review are available. Due to privacy regulations or
simply because their construction is labour intensive, audit samples may not always
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1. Introduction

be available and therefore it is not always possible to obtain a linkage-error corrected
estimate. This may change if an alternative probabilistic linkage procedure could be
developed. The main purpose of the current probabilistic linkage method by Fellegi
and Sunter (1969) is to link individual population units as accurate as possible, but for
MSE the main concern is the accuracy of the aggregated counts nab, which is not nec-
essarily the other side of the same coin. Therefore, if a probabilistic linkage method
can be developed that optimises the accuracy of nab instead of the accuracy of the
number of correct linkages, an audit sample may no longer be needed and obtaining a
linkage-error corrected estimate more realistic. Whether and how such an alternative
but valuable probabilistic linkage method would work is an open question and could
be a topic of further research.

In Chapter 5 a large set of existing time series nowcasting models is tested and
discussed. In Chapter 6 a new nowcasting model, designed specifically for MSE, is
developed. The models from both these chapters can also be combined, which may
further increase the accuracy of the resulting MSE estimates. However, to accurately
test this combined approach, more and longer time series of MSE samples that were
available for the work in Chapter 6 are required. This may therefore be a topic of
further research.
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Chapter 2

Bias correction in multiple systems
estimation

If part of a population is hidden but two or more sources are available that
each cover parts of this population, dual- or multiple system(s) estimation can be
applied to estimate this population. For this it is common to use the log-linear
model, estimated with maximum likelihood. These maximum likelihood esti-
mates are based on a non-linear model and therefore suffer from finite-sample
bias, which can be substantial in the case of small samples or a small popula-
tion size. This problem was recognised by Chapman, who derived an estimator
with good small sample properties in the case of two available sources. How-
ever, he did not derive an estimator for more than two sources. We propose an
estimator that is an extension of Chapman’s estimator to three or more sources
and compare this estimator with other bias-reducing estimators in a simulation
study. The proposed estimator performs well, and much better than the other
estimators. A real data example on homelessness in the Netherlands shows that
our proposed model can make a substantial difference.

A revised version of this chapter has been accepted, conditional on some small issues, for publica-
tion in the Journal of Official Statistics. A preliminary version is available at arXiv, i.e. Zult, D.B. (DZ),
van der Heijden, P.G.M. (PvdH) and Bakker, B.F.M. (BB), 2023, Bias correction in multiple systems
estimation, arXiv, https://doi.org/10.48550/arXiv.2311.01297. Author contributions: PvdH sug-
gested the topic, DZ worked out the idea, did the analyses and wrote the text, PvdH and BB discussed
and edited the text.
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2. Bias correction in multiple systems estimation

2.1 Introduction

A well-known statistical problem concerns the estimation of the size of a population
that is only partly observed by different sources. By linking the records in the sources
the number of units observed by at least one source is found, but the number of units
that are missed by all sources is unknown. The standard method to estimate this
hidden number is known as dual-system estimation (DSE) for two lists and multiple
systems estimation (MSE) for more than two lists. Other names found in the literature
are capture-recapture, mark-recapture, multiple-recapture and multiple-record systems es-
timation. A literature overview is provided by Chao, Tsay, Lin, and Chao (2001),
who discuss these models in the context of human populations. An overview of its
history and applications is provided by e.g. Cormack (1989); Bird and King (2018)
and International Working Group for Disease Monitoring and Forecasting (1995a,
IWGDMF).

DSE leans on a set of assumptions extensively described by, for example, Wolter
(1986) and Zhang (2019). The IWGDMF summarize them as:

1. There is no change in the population during the investigation (the population is
closed).

2. There is no loss of tags (individuals can be linked from capture to recapture).

3. For each sample, each individual has the same chance of being included in the
sample.

4. The two samples are independent.

Earlier Seber (1982) and later Chao et al. (2001) and van der Heijden, Whittaker,
Cruyff, Bakker, and van der Vliet (2012) showed that assumption 3 can be further
relaxed, i.e., it is sufficient that each individual has the same chance of being included
in only one of the samples, instead of both samples. When individuals have differ-
ent inclusion probabilities, but covariates are available that are related to those, they
can be included in the DSE or MSE model to control for them, (see e.g. Alho, 1990;
Hook & Regal, 1995; Tilling & Sterne, 1999). In MSE assumption 4 can be relaxed,
because samples are allowed to be dependent, and in practical situations this makes
MSE much more realistic than DSE.

Under the appropriate assumptions and conditions, a maximum likelihood (ML)
estimator can be derived for the hidden and total population size. However, in fi-
nite samples these ML-estimators are mean-biased, (see e.g. Chapman, 1951; Bailey,
1951; Rivest & Lévesque, 2001). This mean-bias can be shown for the ML-estimators
directly, but also follows more generally from the fact that these estimators make use
of a hierarchical log-linear model (Fienberg, 1972), which provides median-unbiased,
but not mean-unbiased estimates, (see e.g. Miller, 1984; Hald, 1952, Ch. 7). This
finite-sample mean-bias (from now on referred to as finite-sample bias or simply bias)
can be substantial in the case of small samples (Rainey & McCaskey, 2021; Long, 1997,
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2.2. Dual-system estimation

p. 53-54), which in a DSE or MSE model can also occur if one source (or a combination
of sources and categorical covariates) contains very few records (Tilling, 2001).

The role of finite-sample bias in the discussion on the robustness and accuracy of
MSE-estimators is generally small. The focus is usually on other issues that lead to
inaccurate estimates, such as failing model assumptions, (see e.g. Gerritse, van der
Heijden, & Bakker, 2015; Zult et al., 2021) or model selection uncertainty (Silverman,
2020; Binette & Steorts, 2022). While it is true that these issues can potentially lead
to large estimation bias, it is not clear how these issues are affected by finite-sample
bias, simply because it is usually ignored. This is unfortunate, because correcting
for finite-sample bias comes at almost no costs to researchers (Rainey & McCaskey,
2021), while, as we will see its impact can be substantial and therefore may affect
conclusions.

The first to address the problem of finite-sample bias in DSE were Chapman (1951)
and Bailey (1951). To reduce bias, they both proposed their own bias-reducing DSE
estimator. Chapman showed that his estimator is “essentially unbiased” (Chapman,
1951, p. 145) and it became the most well-known of the two. Neither the Chapman
nor Bailey estimator was extended towards MSE. The main contribution of this paper
is the proposal of a Chapman MSE-estimator.

Our proposed Chapman MSE-estimator is not the first estimator that aims to re-
duce bias in the ML-estimator. Evans and Bonett (1994) and Rivest and Lévesque
(2001) proposed population size estimators with the same goal. Others, such as
Cordeiro and McCullagh (1991); Firth (1993); Kosmidis, Kenne Pagui, and Sartori
(2020) and Kosmidis and Firth (2021), proposed bias-reduction methods for ML-
estimators in log-linear models in general, which can be used in the context of MSE.
In this paper we will compare the performance of these bias-reducing MSE-estimators
with our Chapman MSE-estimator in simulation studies.

The paper is structured as follows. Section 2.2 discusses DSE and bias in DSE
estimators. Section 2.3 discusses MSE and a derivation of the new Chapman MSE-
estimator for saturated log-linear models, i.e., log-linear models where the number
of independent parameters equals the number of counts. In Section 2.3.3 this new
estimator is generalised towards a Chapman MSE-estimator that is also valid for re-
stricted log-linear models. In Section 2.4 the new Chapman MSE-estimator is used to
estimate the number of homeless people in The Netherlands. Section 2.5 discusses
and concludes.

2.2 Dual-system estimation

This section discusses DSE. We first introduce notation, then Section 2.2.1 proceeds
with the Lincoln-Peterson estimator and the log-linear model. Section 2.2.2 discusses
the different distributional assumptions that underlie DSE and some of their implica-
tions. Section 2.2.3 introduces the problem of mean-bias and gives the bias-reducing
DSE estimators proposed by Chapman (1951) and Bailey (1951). This section also
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2. Bias correction in multiple systems estimation

presents an alternative interpretation of the derivation of the Chapman-estimator that
has the advantage that it allows the Chapman-estimator to be easily extended towards
a similar estimator for multiple sources (which we will do in Section 2.3). Finally, in
Section 2.2.4, bias-reducing DSE estimators are compared in a straightforward simu-
lation study.

A description of the DSE problem starts from a population that consists of N
unique units that are partly observed by two sources A and B, where the units are
matched between sources. Each source is a random sample from the population, so in
general not all N units are observed. Each unit has an inclusion pattern that tells us
in which source(s) a unit was observed. This inclusion pattern is denoted as ab with
a,b = {1,0}, where a = 1 stands for “in the first source” and a = 0 for “not in the first
source”, and the same with b for the second source. This implies that the inclusion
pattern 00 belongs to the unobserved units.

DSE uses the frequencies of occurrence of each inclusion pattern, which are simply
the counts of the units with identical inclusion patterns. These counts are denoted as
nab. A vector of the observed counts is denoted as n, excluding the unobserved count
n00. When we sum over a or b, we replace that subscript by “+”. Thus n10 + n11 = n1+
is equal to the size of the first source, and n+1 to the size of the second source. The
total number of observed units is denoted as n, which allows us to write N = n+ n00.
nab and n00 are considered random variables with expectation mab and m00. Estimates
for N , mab and m00 are denoted by N̂ est, m̂est

ab and m̂est
00 , where the superscript “est”

indicates the estimator that was used. These bias-reducing estimators can be obtained
by using adjusted counts, that we denote as nest

ab or nest.

2.2.1 The Lincoln-Petersen estimator and the log-linear model

The first DSE model for population size estimation was proposed by Petersen (1896),
and later Lincoln (1930). It is often referred to as the Lincoln-Petersen (LP) estima-
tor. The LP-estimator can be derived from the assumption of independence between
source A and B, which implies that the odds-ratio between source A and B, denoted
by θAB, is

θAB =
m11/m10

m01/m00
= 1, (2.1)

which leads to
m00 =

m10m01

m11
. (2.2)

By plugging in ML estimates for mab, which are simply the observed values nLP
ab = nab

(see e.g. Bishop et al., 1975), the LP-estimator for the missing cell is

m̂LP
00 =

nLP
10n

LP
01

nLP
11

=
n10n01

n11
, (2.3)
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and the population size estimate

N̂LP = n+ m̂LP
00 =

n1+n+1

n11
. (2.4)

The LP-estimator for the missing cell and for the population size are ML-estimators.
Fienberg (1972) shows that the LP-estimator can also be obtained from log-linear

parameter estimates of the log-linear model

logE[n|X] = Xλ, (2.5)

with, for two sources, n = nLP = (n11,n01,n01)⊤, X =

 1 1 1
1 1 0
1 0 1

 and λ =
(
λ,λA

a ,λ
B
b

)⊤
. λ

is the intercept term, and λA
a and λB

b are the respective inclusion parameters for source
A and B that are identified by setting λA

0 = λB
0 = 0. It is further assumed that Eq. (2.5)

also holds for m00. The parameters of a log-linear model are usually estimated with
ML, which for Eq. (2.5) gives the ML estimates λ̂ML, λ̂A,ML

a and λ̂B,ML
b , which can be

used to estimate m00, i.e.:

m̂ML
00 = exp λ̂ML, (2.6)

where m̂ML
00 is equal to m̂LP

00 . It is well known that ML-estimators for log-linear models
are biased (see e.g. Miller, 1984; Hald, 1952, Ch. 7), so this also holds for m̂LP

00 .

2.2.2 Distributional assumptions

Chapman (1951) and Bailey (1951) showed that the LP-estimator can be derived as an
ML-estimator, assuming that n11 and n01 conditional on n1+ and N , follow a hyper-
geometric (Chapman) or binomial (Bailey) distribution. In the context of population
size estimation, a hypergeometric distribution seems more fitting, because it assumes
sampling without replacement, which matches the “no duplicates” assumption (i) of
Zhang (2019). Bailey (1951, p. 294) was aware of this issue when he wrote “We shall
assume that n+1 is sufficiently small compared with N for us to be able to ignore the
complications of sampling without replacement”. However, later Darroch (1958) ar-
gued that this choice is less obvious. He first showed that the LP-estimator can also be
derived by assuming either

(n11,n10,n01,n00) ∼Multinomial(N,p11,p10,p01)
or

(n11,n10,n01,n00) ∼Hypergeometric(N,p11,p10,p01)

with pab = mab/N . Darroch (1958) discusses which of these distributions is the ap-
propriate choice for any given experiment. He concludes that they lead to the same
estimate N̂ of N and the same asymptotic estimate of Var(N̂ ), so the difference is
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notable only in higher moments. He further states that “In fact, if we had to gen-
eralise, we could say that the hypergeometric is likely to be appropriate when the
main limiting factor on sample size is the trouble involved in marking animals and
the multinomial when it is the difficulty in catching them.”. This implies that, for in-
stance, if a population is partly observed by lists of records that contain unique record
ID-codes, the multinomial seems to be the most appropriate choice. Finally, Darroch
(1958) concludes that the multinomial distribution is capable of generalisations that
the hypergeometric is unable to accommodate, an advantage that we will use in this
paper.

Later, Bishop et al. (1975, p. 446) showed that the assumption of a multinomial
distribution can also be replaced by

nab ∼Poisson(mab) ,
with

n00 =N −n11 −n10 −n01,

without loss of generality. Both the multinomial and Poisson distribution have the
practical advantage that they can deal with multiple sources more easily, but the Pois-
son distribution has a second advantage because it allows the simplification of some
derivations due to Cov(nab,n,ab) = 0 and Cov(1/nab,n,ab) = 0.

2.2.3 Bias reduction in dual-system estimation

Chapman (1951) and Bailey (1951) were the first to be aware of the bias in the LP-
estimator. This bias can be easily seen when we assume nab ∼ Poisson(mab) and write
the expectation of the LP-estimator as

E
[
m̂LP

00

]
= E

[
n10n01

n11

]
= m10m01 E

[
1
n11

]
, (2.7)

which is not equal to m10m01
m11

because E
[

1
n11

]
, 1

m11
. This shows that under a Poisson

distribution, 1
n11

is the only source of bias in the LP-estimator, which was also noted
by Rivest and Lévesque (2001).

Chapman and Bailey started with the hypergeometric and binomial distribution
respectively and used different approximation approaches for the expectation of the
ML-estimator to derive their bias-reducing estimators. Bailey used a second-order
Taylor series approximation and concludes that

m̂
Bailey
00 =

n
Bailey
10 n

Bailey
01

n
Bailey
11

=
n10(n01 − 1)

(n11 + 1)
(2.8)

and

N̂Bailey =
n1+(n+1 + 1)

(n11 + 1)
. (2.9)
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are bias-reducing estimators for m00 and N respectively (Bailey, 1951, p. 295).
Chapman uses a different approach that is recommended by Stephan (1945). In-

stead of a Taylor approximation, Stephan recommends writing E
[

1
x

]
, with x a bino-

mial random variable, as a series of inverse factorials, as one needs quite a few terms
before a Taylor series becomes reasonably accurate (Stephan, 1945, p. 52). This in-
creased rate of convergence of Stephan’s inverse factorial approximation in the case
of E

[
1
x

]
and n11 ∼ Poisson(m11), is illustrated with a straightforward simulation study

presented in Appendix 2.6.1. Chapman uses Stephan’s inverse factorial approxima-
tion to derive a bias-reducing expression for n10n01

n11
and concludes that a bias-reducing

estimator for m00 is

m̂
Chap
00 =

n
Chap
10 n

Chap
01

n
Chap
11

=
n10n01

(n11 + 1)
, (2.10)

and for N

N̂Chap =
(n1+ + 1)(n+1 + 1)

(n11 + 1)
− 1. (2.11)

A Bailey or Chapman estimate can also be obtained from the log-linear model in Eq.
(2.5), if instead of nLP = (n11,n10,n01)⊤, respectively nBailey = (n11 + 1,n10,n01 − 1)⊤ or
nChap = (n11 + 1,n10,n01)⊤ is used.

The Chapman- and Bailey-estimator differ only slightly, but the Chapman-
estimator became the standard bias-reducing estimator in the DSE literature. A good
reason is that Chapman (1951, p. 146) further shows that if n1+n+1

N > log
(
N
ϵ

)
holds,

then ∣∣∣∣E [
N̂Chap

]
−N

∣∣∣∣ < ϵ
100

N,

with ϵ some arbitrary small positive number (Cramer, 1922, p. 502), also holds. This
means that if the two sources are large enough compared to N , the bias in N̂Chap is less
than ϵ percent of N and so Chapman refers to his estimator as “essentially unbiased”.
Therefore we refer to the Chapman-estimator not only as a bias-reducing, but also as
a bias-corrected estimator. Chapman (1951, p. 146) finally notes that the Chapman-
estimator requires

n1+n+1

N
> logN, (2.12)

to hold. This inequality is derived from setting
∣∣∣∣E [

N̂Chap
]
−N

∣∣∣∣ ≤ 1 and can be consid-
ered a regularity condition for the Chapman-estimator. If this regularity condition is
not met, N̂Chap may suffer from considerable (negative) bias, as we will illustrate later
in scenario 7 in the simulation study in Table 2.1. Later, Wittes (1972) showed that
the Chapman-estimator is unbiased if n1+ +n+1 > N .

Chapman derived his estimator for the hypergeometric distribution, but it can
also be developed with second-order Taylor approximations for the multinomial and
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Poisson distributions, which are derived in Appendix 2.6.2. This derivation suggests
that the Chapman-estimator is also valid under a multinomial or Poisson distribution.
This is useful when we extend the Chapman-estimator to multiple sources in Section
2.3.2. Combining the Chapman-estimator with the results in Appendix 2.6.1 and 2.6.2
implies that if nab ∼ Poisson(mab) we can write

1
mab
≈ E

[
1

nab + 1

]
. (2.13)

This equation will allow us to easily extend the Chapman MSE-estimator towards
multiple sources in Section 2.3.2.

Bailey did not extend his estimator to more than two sources. Chapman (1952) did,
but he only considered the case where a unit was tagged in an earlier source or not, and
did not consider dependence between pairs of sources. Dependence between sources
is further discussed in Section 2.3.1. Others, like Cordeiro and McCullagh (1991);
Firth (1993); Evans and Bonett (1994); Rivest and Lévesque (2001) and Kosmidis et al.
(2020) have proposed bias-reducing estimators for log-linear models in general and
therefore do take dependence between sources into account. These models are dis-
cussed in more detail in Section 2.3.1.1. However, we will include these bias-reducing
estimators in the simple DSE simulation study presented in Section 2.2.4.

2.2.4 Dual-system estimation simulation study

In this section we compare the LP-, Bailey-, Cordeiro, Firth-, Kosmidis, Evans and
Bonette (EB)-, Rivest and Lévesque (RL)- and Chapman-estimator in a DSE setting.
The LP-, Bailey- and Chapman-estimator can only be used in DSE and were discussed
in the previous sections. The Cordeiro, Firth-, Kosmidis, EB- and RL-estimator can be
applied in both DSE and MSE and will be discussed in Section 2.3.1.1. The method
that is used to generate contingency tables is discussed in Hammond, van der Heij-
den, and Smith (2024). It allows the generation of contingency tables with a log-linear
model that has prespecified inclusion probabilities pA and pB and odds ratio(s). The
resulting nab are generated from a multinomial distribution. This is particularly use-
ful in the next section in which we consider more than two sources, and pairs of
sources that are dependent.

A minor but important simulation issue is the regularity condition in Eq. (2.12),
or the issue of what Otis, Burnham, White, and Anderson (1978, p. 125) refer to as
“failures”. This implies that the relation between n1+, n+1 and N must be set such
that they comply with Eq. (2.12). A simple example of a failure is when, in DSE, n11
equals zero, which leads to N̂LP =∞. Otis et al. (1978) recommend replacing such a
replication with a new replication, an advice that was followed in Evans and Bonett
(1994). However, replacing failure replications, that correspond to large population
size estimates, with new replications, introduces selection bias in the sense that, when
N̂ est is an unbiased estimator for N , the mean of these estimates N̄ est =

∑R
r=1 N̂

est
r /R

with R the number of replications, departs from N . Therefore, to obtain accurate
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mean estimates that allow a fair comparison of bias between the different estimators,
we choose the combined N , pA and pB such that for the scenarios S = 1,2, . . . ,6 (see
Table 2.1) the probability of failures becomes close to zero. Nonetheless a failure
occurred once for scenario 1. These settings also imply that the regularity condition
in Eq. (2.12) holds by a substantial margin. To see how estimators are affected when
the regularity condition is violated, we have added a 7th scenario under which the
regularity condition does not hold, i.e. n1+ = n+1 = 15, so n1+n+1/N = 225/100 <
log100.

The scenario parameters are shown in the columns N,pA and pB of Table 2.1 below.
The different estimators that are compared are shown in the columns that follow. In
the context of DSE some estimators are equivalent and their results are displayed
in a single column. This holds for N̂EB, N̂Cordeiro, N̂Firth and N̂Kosmidis (denoted as
N̂EB/CFK), and for N̂Chap and N̂RL (denoted as N̂Chap/RL).

Table 2.1: Simulation study with 20,000 replications for seven DSE scenarios.

S N pA pB n̄ N̄LP N̄Bailey N̄EB/CFK N̄Chap/RL

1 100 0.5 0.2 60.0 105.3∗∗∗† 96.1∗∗∗ 105.2∗∗∗ 100.1
2 100 0.35 0.3 54.5 106.0∗∗∗ 98.0∗∗∗ 105.3∗∗∗ 100.4∗

3 500 0.4 0.15 244.9 508.3∗∗∗ 493.6∗∗∗ 507.4∗∗∗ 499.2
4 500 0.25 0.2 200.1 512.4∗∗∗ 495.4∗∗∗ 509.3∗∗∗ 499.4
5 10,000 0.3 0.1 3,699.2 10,018.0∗∗∗ 9,987.9∗∗∗ 10,013.1∗∗∗ 9,996.9
6 10,000 0.25 0.15 3,624.9 10,016.7∗∗∗ 9,993.9∗ 10,012.5∗∗∗ 9,999.6

7 100 0.15 0.15 27.8 146.2∗∗∗† 87.2∗∗∗ 128.0∗∗∗ 92.3∗∗∗

n̄ gives the mean number of observed units n over all replications. The superscripts ∗, ∗∗ and
∗∗∗ indicate that we can reject N̂ est = N with a two-sided t-test with p-values = 0.05,0.01 and
0.001 respectively. A † as superscript indicates that extremely high estimates due to failures
were replaced with the corresponding N̂EB for that replication.

The ∗s in the column of N̄Chap/RL indicate that for p-value = 0.05, in five out of
the six regular scenarios, the hypothesis N = N̂Chap/RL cannot be rejected. For p-value
= 0.01 this holds for all six regular scenarios. The same does not hold for the other
estimators, for which the mean over all replications, in most cases, significantly differs
from N for p-value = 0.001, and for all cases for p-value = 0.05. For all scenarios the
bias in N̂Chap/RL is smaller than the bias in the other estimators. This shows that in
DSE, the Chapman- and RL-estimator are superior to the other estimators. If Chap-
man’s regularity condition in Eq. (2.12) is not met, as in scenario 7, all estimators are
considerably biased.

The standard error (SE) and root mean squared errors (RMSEs) that correspond to
each estimator and scenario in Table 2.1 can be found in Table 2.8 in Appendix 2.6.3.1.
This table shows that the SEs and RMSEs of the Bailey- and Chapman/RL-estimator
are smaller than the RMSEs of the EB/CFK-estimator, which in turn are smaller than
the RMSEs of the ML-estimator.
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2. Bias correction in multiple systems estimation

2.3 Multiple systems estimation

This section discusses multiple systems estimation (MSE). First it introduces some
notation additional to the DSE notation introduced in Section 2.2. Next, Section 2.3.1
proceeds with some MSE preliminaries and bias-reducing MSE-estimators. In Section
2.3.2 we derive a new bias-corrected estimator that can be considered an extension of
the Chapman-estimator towards MSE under saturated models. In Section 2.3.3 the
Chapman MSE-estimator is further generalised towards all log-linear models, both
saturated and restricted.

MSE considers the case where a population that consists of N unique units is partly
observed by a set of k sources, indicated by A,B,C, ...,K . For ease of notation we will,
where possible, discuss MSE from the perspective of three sources, because it can
often be generalised to k sources in a straightforward way. For three sources, the
inclusion pattern is denoted as abc with a,b,c = 1,0, with the same meaning as ab in
DSE notation. For k sources the inclusion pattern is ab . . .k. We introduce notation
that allows us to distinguish between the sets of unit counts that are observed an
even and odd number of times, that we denote by neven (or meven, m̂even) and nodd
(or modd, m̂odd). For three sources this gives nodd = (n111,n100,n010,n001) and neven =
(n110,n101,n011).

In contrast to DSE, in MSE the log-linear model can take different forms. There-
fore, the superscript in N̂ est, nest

ab and m̂est
ab is extended to N̂ est, LLM, nest, LLM

abc and
m̂est, LLM

abc , where “est, LLM” specifies not only the chosen estimator but also the chosen
log-linear model.

2.3.1 Preliminaries

The first to consider more than two sources was Schnabel (1938). After this the use
of multiple sources became more common and estimators were introduced that made
use of different distributional assumptions. For instance, Chapman (1954); Darroch
(1958) and Cormack and Jupp (1991) assumed every element in nabc to be an indepen-
dent realisation from a Poisson distribution. This is a reasonable assumption when
nabc are relatively small compared to N , but when this is not true, one should take
into account that each mabc has an upper-bound of N . Adding this restriction to the
Poisson distribution assumption is equivalent to assuming that the joint set of nabc has
a multinomial distribution with expectations mabc for which m000 +

∑
abcmabc = N , (see

e.g. Sanathanan, 1972; Bishop et al., 1975; Wolter, 1986; Darroch, Fienberg, Glonek,
& Junker, 1993).

In the case of three sources the independence assumption that holds in DSE is
relaxed and it is sufficient to assume that two conditional odds-ratios given the levels
of the third source are equal. For example, for the two odds-ratios of source A and B
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given source C

m110/m100

m010/m000
=
m111/m101

m011/m001
, (2.14)

which gives

m000 =
m111m100m010m001

m110m101m011
. (2.15)

A general expression is provided by Fienberg (1972), who states that for k sources,
m00...0 can be written as

m00...0 =
∏

modd∏
meven

. (2.16)

For three sources, the saturated (SAT) log-linear model for the seven observed counts
becomes

SAT: logmabc = λ+λA
a +λB

b +λC
c +λAB

ab +λAC
ac +λBC

bc , (2.17)

where the parameters are identified by setting them to zero if one or more of the
subscripts are 0. In comparison to DSE, in the saturated log-linear model the inde-
pendence assumption is replaced by the assumption of no three-factor interaction, i.e
λABC
abc = 0. The interaction parameters λAB

ab , λAC
ac and λBC

bc allow for interactions be-
tween pairs of sources, and thus the model is less restrictive than the DSE model and
hence more realistic in applications.

For three sources, the saturated model is not the only log-linear model that can be
used. If the parameters of one or more pairs of sources are set to zero (e.g. λAB

ab = 0),
we have a restricted log-linear model. An advantage of further restricted models is
that the resulting estimates have smaller variance than estimates from less restricted
models (Bishop et al., 1975, p. 242). A disadvantage is that they give biased estimates
if the assumed restriction does not hold. We discuss restricted models in more detail
because, as will be shown in Section 2.3.3, the chosen model specification affects the
bias-corrected estimator. Fienberg (1972) and Bishop et al. (1975) discuss the three
possible alternative log-linear model formulations for three sources where all direct
inclusion parameters λa, λb and λc are included. Starting from the saturated log-
linear model SAT in Eq. (2.17), they discuss the two-pair dependence (2PD), the one-
pair dependence (1PD), and independence (IND) model. Examples of 2PD and 1PD
are

2PD : logmabc = λ+λA
a +λB

b +λC
c +λAB

ab +λBC
bc , (2.18)

1PD : logmabc = λ+λA
a +λB

b +λC
c +λAB

ab (2.19)
and

IND : logmabc = λ+λA
a +λB

b +λC
c . (2.20)
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2. Bias correction in multiple systems estimation

It suits our purpose to write these models as in Eq. (2.5). They all use
n = nML = (n111,n110,n101,n011,n100,n010,n001), but differ with respect to λ = λLLM

and X = XLLM. λLLM simply consists of the λ’s in the corresponding LLM and XLLM

becomes XSAT
abc , X2PD

abc , X1PD
abc or XIND

abc written as

1 1 1 1 1 1 1
1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0


,



1 1 1 1 1 1
1 1 1 0 1 0
1 1 0 1 0 0
1 0 1 1 0 1
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0


,



1 1 1 1 1
1 1 1 0 1
1 1 0 1 0
1 0 1 1 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0


or



1 1 1 1
1 1 1 0
1 1 0 1
1 0 1 1
1 1 0 0
1 0 1 0
1 0 0 1


,

respectively. Estimating one of these models with ML gives the fitted-values
m̂ML, LLM

abc .
A general expression for mML, LLM

000 is obtained by replacing the mabc in Eq. (2.15)
with the ML estimates m̂ML, LLM

abc . For LLM = SAT this gives mML, LLM
abc = mSAT, ML

abc = nabc
and thus

m̂SAT, ML
000 =

n111n100n010n001

n110n101n011
. (2.21)

For model 2PD and 1PD, Fienberg (1972, p. 596) shows this expression can be further
simplified, i.e.,

m̂2PD, ML
000 =

n100n001

n101
(2.22)

and
m̂1PD, ML

000 =
n001n++0

n111 +n101 +n011
. (2.23)

For model IND, such a closed form solution does not exist. However, for IND an
estimate can be obtained by replacing the mabc in Eq. (2.15) with the fitted-values
m̂IND, ML

abc . Fienberg (1972, p. 597) shows that this is in fact an approach that can
be generally used, where Eq. (2.16) gives an estimate of the missing cell for any log-
linear model with any number of sources. Note that the LP-estimator in Eq. (2.3) can
be considered a special of (2.16), with k = 2 and LLM = SAT.

2.3.1.1 Bias reduction in multiple systems estimation

Bias in MSE models was considered by Evans and Bonett (1994) and Rivest and
Lévesque (2001), who propose MSE-estimators with improved finite-sample prop-
erties. More general bias-reducing estimators for ML estimates in generalised lin-
ear models, such as the log-linear model, are introduced in Cordeiro and McCul-
lagh (1991); Firth (1993). These models are also known as generalised linear mod-
els (GLMs) using adjusted score functions see also Kosmidis et al. (2020) for further
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discussion. A DSE example of this approach can be found in Section 2.2.3, where re-
placing n with the adjusted nChap or nBailey led to the bias-reducing DSE estimators
by Chapman and Bailey. These more general estimators aim to derive the first-order
bias term from the ML-estimators, (see e.g. Sowden, 1972). Cordeiro and McCul-
lagh (1991) derive a first-order bias expression for generalised linear models, such
as the log-linear model, from the bias expression by McCullagh and Nelder (1989,
5.13, p. 456), and use it to reduce bias. Firth (1993) showed that this reduction can
also be achieved by iteratively modifying the score function, which in a Poisson log-
linear model implies iteratively modifying the dependent count variable. For simple
MSE models this iterative modification converges to the modification used in the more
straightforward bias-reducing MSE-estimator by Evans and Bonett (1994). Rivest and
Lévesque (2001) also derive a modification scheme to remove first-order bias for the
MSE models proposed by Otis et al. (1978), which correspond to a selected set of log-
linear models (Chao, 2001). For two samples the estimator by Rivest and Lévesque
(2001) is equal to the Chapman-estimator and for more than two samples they show
that their estimator outperforms the estimator by Evans and Bonett (1994) in a Monte
Carlo experiment.

The simplest bias-reducing MSE-estimator is proposed by Evans and Bonett (1994,
EB), which we denote as N̂EB,LLM. They propose to use the adjusted nEB = n + 0.5(k−1)

in (2.5) instead of n. This is the result of a compromise between Berkson (1955) and
Plackett (1981). In a log-linear regression model, Berkson proposes to replace values
in nabc that are equal to zero with 0.5(k−1), and Plackett (1981), who states that if nabc ∼
Poisson(mabc), then log(nabc + 0.5) instead of log(nabc) is a more accurate estimate for
log(mabc).

Another bias-reducing estimator that was developed specifically for MSE was pro-
posed by Rivest and Lévesque (2001, RL). They propose a bias reduction method that
can be used to reduce bias in a set of MSE-estimators proposed by Otis et al. (1978)
in the context of wildlife populations. Unfortunately, with the exception of the inde-
pendence model, which corresponds to the Mt model, the other models by Otis et al.
do not correspond exactly to Eq. (2.17) - (2.19). For the SAT, 2PD and 1PD model,
we consider the adjusted counts that belong to model Mth as the most appropriate
choice, because it is most similar. See Evans, Bonett, and McDonald (1994) for further
discussion on this topic. The bias reduction by Rivest and Lévesque is derived from a
standard result by McCullagh and Nelder (1989), about the bias in estimators in gener-
alised linear models. McCullagh and Nelder derive an asymptotic bias expression for
estimates based on models with canonical link functions, such as the log-linear model.
For two sources, the resulting RL-estimator is equal to the Chapman-estimator, as was
seen in Table 2.1. We denote the RL-estimator as N̂RL, LLM and their adjusted count as
nRL, LLM, with nRL, IND = nRL, Mt and nRL, SAT/2PD/1PD = nRL, Mth . For three sources they
become (Rivest & Lévesque, 2001, p. 562):

nRL, Mt = (n111,n110 +
1
3
,n101 +

1
3
,n011 +

1
3
,n100 +

1
6
,n010 +

1
6
,n001 +

1
6

)⊤ (2.24)
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and

nRL, Mth = (n111,n110 +
1
3
,n101 +

1
3
,n011 +

1
3
,n100,n010,n001)⊤. (2.25)

Rivest and Lévesque (2001) show in a simulation study that their estimator outper-
forms the EB-estimator in terms of bias reduction.

Bias reduction in MSE by means of the modified-score functions approach (Firth,
1993) relies on the same standard result about the bias of estimators in GLMs by
McCullagh and Nelder (1989) as was used by Rivest and Lévesque (2001). It was used
by Cordeiro and McCullagh (1991); Firth (1993); Kosmidis (2007); Kosmidis and Firth
(2011) and others to reduce bias in parameter estimates in log-linear models. Cordeiro
and McCullagh; Firth and Kosmidis and Firth give three different bias-reducing pa-
rameter estimates λ̂est for the λ in Eq. (2.5), which correspond to three different bias-
reducing estimators m̂est

000 = exp λ̂est. The description of the details on these estimators
are beyond the scope of this paper, but they are provided in Kosmidis (2014); Kos-
midis et al. (2020) and Kosmidis and Kenne Pagui (2023). In this paper we limit
ourselves to noting that in the DSE and MSE simulation studies presented in this pa-
per we found negligible differences between them, and therefore we denote them as
the single estimator N̂CFK, LLM.

In the next section we extend the Chapman-estimator towards multiple sources,
which results in a Chapman MSE-estimator that differs from the estimators discussed
in this section, both for the saturated and more restricted log-linear models.

2.3.2 The Chapman MSE-estimator for saturated models

To derive a Chapman MSE-estimator, we start with the result of Bishop et al. (1975,
p. 446), who showed that ML-estimators for mabc are equivalent under the assump-
tion that nabc follows either a Poisson or multinomial distribution, provided that∑

abcmabc + m000 = N . Combining the implications of the Chapman-estimator as dis-
cussed in Section 2.2.3 with the MSE models discussed in Section 2.3.1 under the as-
sumption of a Poisson distribution allows us to derive a bias-corrected MSE-estimator
in a straightforward way. The Poisson distribution implies that Cov(nabc,n,abc) = 0
and Cov(1/(nabc + 1),n,abc) = Cov(1/nabc,n,abc) = 0, when we combine this with Eq.
(2.13) and (2.16) this gives

m00...0 =
∏

modd∏
meven

≈
∏

E[nodd]
∏

E
[

1
(neven + 1)

]
= E

[ ∏
nodd∏

(neven + 1)

]
, (2.26)

which suggests

m̂
SAT, Chap MSE
000 =

n111n100n010n001

(n110 + 1)(n101 + 1)(n011 + 1)
(2.27)

as a bias-corrected estimator for three sources, and

m̂
SAT, Chap MSE
00...0 =

∏
nodd∏

(neven + 1)
(2.28)
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for any number of sources.
When we compare the Chapman MSE-estimator in Eq. (2.27) with the RL-

estimator in Eq. (2.25), it becomes clear that the equality between both estimators
in DSE does not hold for MSE. We further note that Chapman MSE estimates can also
be obtained with the Poisson regression model as defined in Eq. (2.5), by using the
modified counts nSAT, Chap MSE

abc instead of n.

2.3.2.1 Simulation study with saturated models

In Section 2.2.4 we have seen that the Chapman- and RL-estimator are equivalent and
less biased than the alternative DSE estimators. This equivalence is unlikely to hold
in MSE, because they are no longer the same estimators. Here we compare them in
a simulation study, together with other bias-reducing MSE-estimators. We consider
fourteen scenarios. The scenarios in Table 2.2 differ with respect to the size of the
population N , the number of sources k and log-linear model specifications (i.e. differ-
ent values for pA, pB, pC , pD , θAB, θAC , θAD , θBC and θCD , see Hammond et al. (2024)
for further details. The odds-ratios are chosen such that scenario 1 − 3 and 13 − 14
concern LLMSi = IND, scenario 4 − 6 concern LLMSi = 1PD, scenario 7 − 9 concern
LLMSi = 2PD, scenario 10−12 concern LLMSi = SAT and finally scenario 15 concerns
LLMSi = 4PD (i.e. four pairs of dependent sources), with LLMSi the log-linear model
used to generate the contingency table. The different parameters are chosen such that
the probability of failures in each scenario is small.

Table 2.2: MSE simulation scenarios

Si N s pA pB pC pD θAB θAC θBC θAD θBD θCD Corresponding model

1 100 3 0.5 0.4 0.3 1 1 1 Independence
2 500 3 0.4 0.3 0.2 1 1 1 Independence
3 10,000 3 0.35 0.3 0.25 1 1 1 Independence

4 100 3 0.5 0.4 0.3 1.5 1 1 One-pair dependence
5 500 3 0.4 0.3 0.2 1.5 1 1 One-pair dependence
6 10,000 3 0.35 0.3 0.25 1.5 1 1 One-pair dependence

7 100 3 0.5 0.4 0.3 1.5 1 0.5 Two-pair dependence
8 500 3 0.4 0.3 0.2 1.5 1 0.5 Two-pair dependence
9 10,000 3 0.35 0.3 0.25 1.5 1 0.5 Two-pair dependence

10 100 3 0.5 0.4 0.3 1.5 0.75 0.5 Saturated
11 500 3 0.4 0.3 0.2 1.5 0.75 0.5 Saturated
12 10,000 3 0.35 0.3 0.25 1.5 0.75 0.5 Saturated

13 1,000 4 0.35 0.3 0.25 0.2 1 1 1 1 1 1 Independence1

14 20,000 4 0.25 0.2 0.15 0.1 1 1 1 1 1 1 Independence1

15 20,000 4 0.25 0.2 0.15 0.1 1.5 1 0.75 1.5 1 0.5 Four-pair dependence1

1 The three-way interaction parameters θABC , θACD and θBCD are set to 1.

The estimates presented in Table 2.3 below are based on the saturated model. This
means that for all scenarios, except scenario 10−12, the model is overspecified. Over-
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Table 2.3: Simulation study with assumed saturated log-linear models, with 100,000 replications for
MSE scenarios 1− 15, for MSE scenario 1− 15 in Table 2.2.

S N n̄ N̄ SAT, ML N̄ SAT, EB N̄ SAT, CFK N̄ SAT, RL N̄ SAT, Chap MSE

1 100 79.0 113.2∗∗∗† 112.3∗∗∗ 110.9∗∗∗ 103.3∗∗∗ 100.0
2 500 332.0 521.8∗∗∗ 522.1∗∗∗ 522.4∗∗∗ 507.0∗∗∗ 500.2
3 10,000 6,587.4 10,016.0∗∗∗ 10,016.8∗∗∗ 10,017.6∗∗∗ 10,004.6∗∗∗ 9,999.0

4 100 77.3 116.9∗∗∗† 115.2∗∗∗ 112.7∗∗∗ 104.0∗∗∗ 99.9
5 500 323.8 525.3∗∗∗ 524.5∗∗∗ 523.9∗∗∗ 508.4∗∗∗ 500.8∗∗∗

6 10,000 6,439.5 10,017.8∗∗∗ 10,018.0∗∗∗ 10,018.3∗∗∗ 10,005.6∗∗∗ 9,999.4

7 100 79.1 120.6∗∗∗† 118.7∗∗∗ 113.6∗∗∗ 104.0∗∗∗ 99.6∗∗∗

8 500 330.5 532.2∗∗∗ 530.8∗∗∗ 529.6∗∗∗ 510.0∗∗∗ 500.3
9 10,000 6,608.9 10,020.9∗∗∗ 10,021.6∗∗∗ 10,022.4∗∗∗ 10,007.3∗∗∗ 10,000.6

10 100 80.0 118.2∗∗∗† 116.6∗∗∗ 112.8∗∗∗ 103.8∗∗∗ 99.7∗∗∗

11 500 334.1 529.5∗∗∗† 529.4∗∗∗ 529.3∗∗∗ 508.9∗∗∗ 499.9
12 10,000 6,690.3 10,021.2∗∗∗ 10,022.6∗∗∗ 10,023.9∗∗∗ 10,008.0∗∗∗ 10,001.5

13 1,000 727.0 1,205.3∗∗∗† 1,196.4∗∗∗ 1,134.2∗∗∗ 1,183.7∗∗∗ 996.8∗∗∗

14 20,000 10,819.7 20,904.5∗∗∗ 20,859.1∗∗∗ 20,730.0∗∗∗ 20,846.6∗∗∗ 20,005.8
15 20,000 10,677.5 21,333.1∗∗∗ 21,281.8∗∗∗ 21,143.0∗∗∗ 21,255.0∗∗∗ 20,033.2∗∗

n̄ gives the mean number of observed units n over all replications. The superscripts ∗, ∗∗ and
∗∗∗ indicate that we can reject N̂ est = N with a two-sided t-test with p-values = 0.05,0.01 and
0.001 respectively. A † as superscript indicates that extremely high estimates due to failures
were replaced with the corresponding N̂ SAT, EB for that replication.

specification only affects the variance and not the mean of an estimator, so it does not
lead to the introduction of bias, although it may increase the bias when it is present,
which is discussed in more detail below Table 2.5. In contrast to the DSE simulation
study in Section 2.2.4, it was not possible to exclude failures in all scenarios, in partic-
ularly for N = 100. In those cases the estimates where replaced with the EB-estimator
for that replication, indicated by a superscript † in the cell.

The results in Table 2.3 indicate that, with the saturated model, the Chapman
MSE-estimator performs best of the tested estimators, irrespective of the underlying
LLMSi . For p = 0.01 it gives a mean value that cannot be rejected to be different from
N in 14 out of 15 scenarios. Also, in the scenarios where the Chapman MSE-estimator
shows some statistically significant bias for p = 0.001 (S = 5,7,10 and 13), the bias is
small in itself and much smaller than in the other estimators. For the IND and 1PD
model with large N , the bias of the ML, EB and CFK-estimators is equally large. This
unexpected indifference might be due to the modification of elements of nabc that are
in the numerator of the ML-estimator, which, as we have seen in Section 2.3.2, is un-
necessary. The RL-estimator performs clearly better than the EB- and CFK-estimator,
but still shows some statistically significant bias for most scenarios, especially for sce-
nario 13 or when N = 100 or 500.

24



2.3. Multiple systems estimation

The SEs and RMSEs that correspond to each estimator and scenario in Table 2.3
can be found in Table 2.9 and 2.10 in Appendix 2.6.3.2. These tables show that under
an assumed saturated model, the Chapman-estimator not only outperforms the other
estimators in terms of bias, but also in terms of SE and RMSE, in particular for smaller
N , irrespective of the model specification that was used to generate the contingency
tables.

The estimates in Table 2.3 are based on the saturated model, but more restricted
models such as those in Eq. (2.18), (2.19) and (2.20) might be assumed. In the next
section we will therefore discuss the Chapman MSE-estimator for restricted models.

2.3.3 A generalisation of the Chapman MSE-estimator towards re-
stricted models

The Chapman MSE-estimator for saturated models, as discussed in the previous sec-
tion, is not necessarily a correct bias-corrected estimator for restricted log-linear
models. As an example where the use of the Chapman MSE-estimator for satu-
rated models leads to an incorrect result, consider the 1PD model (2.19) with esti-
mator (2.23). When this estimator uses the modified count vector nSAT, Chap MSE =
(n111,n110 + 1,n101 + 1,n011 + 1,n100,n010,n001) instead of the observed count vector n,
this gives

m̂
Chap MSE’,1PD
000 =

n001(n++0 + 1)
n111 + (n101 + 1) + (n011 + 1)

.

We know that this estimator is not correcting for bias correctly, because the ML-
estimator for the 1PD model has the same structure as the LP-estimator, namely the
product of two Poisson variables in the nominator (i.e. n001n++0) and a single Poisson
variable in the denominator (i.e. the sum n111 +n101 +n011). Therefore we should use
the same bias-correction as used in the Chapman-estimator, namely

m̂
Chap MSE, 1PD
000 =

n001n++0

n111 +n101 +n011 + 1
. (2.29)

This is the correct bias-corrected estimator for the 1PD model. Similarly, for the 2PD
model (2.18) with estimator (2.22) we have the bias-corrected estimator

m̂
Chap MSE, 2PD
000 =

n001n100

n101 + 1
. (2.30)

For the independence model for three sources, a direct solution for the ML-estimator
does not exist and therefore we cannot use the approach adopted above for the 1PD
and 2PD model as a general solution. Furthermore, for log-linear models with more
sources and more source dependencies, the derivations performed by Bishop et al.
(1975) become increasingly complex.
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Generally, in order to correct for bias, it appears that we should only know which
(functions of) observed counts nabc are in the denominator of m̂ML, LLM

000 , and subse-
quently adjust these counts to correct for bias. To identify these (functions of) ob-
served counts nabc, we propose to use the Moore-Penrose inverse (Moore, 1920; Pen-
rose, 1955, MPI), that can be used to obtain a “best fit” (i.e. least squares) solution (if
any exists) for systems of linear equations.

2.3.3.1 Bias reduction by using the Moore-Penrose inverse

We start with the log-linear model in Eq. (2.5), logE[n|X] = Xλ, which is a system of
linear equations. A solution for λ can be found with the help of the MPI that we write

as ZLLM =
((

XLLM
)⊤

XLLM
)−1 (

XLLM
)⊤

, i.e.:

λMPI = ZLLM log
[
n|XLLM

]
= ZLLM logm. (2.31)

For two sources this gives m = (m11,m10,m01)⊤, λMPI =
(
λMPI,λA,MPI

a ,λB,MPI
b

)⊤
, X =

Xab =

 1 1 1
1 1 0
1 0 1

 and Z = Zab =

 −1 1 1
1 0 −1
1 −1 0

. We are interested in a solution for

m00, which is m00 = exp
{
λMPI

}
, and because λMPI depends only on the first row of

Zab, only this row is relevant for our purpose. We write this row as the vector z =
(z11, z10, z01)⊤ = (−1,1,1)⊤. Thus (2.31) allows us to write m00 as a function of zab and
mab, i.e.

m00 = expλMPI = exp
∑
ab

zab logmab =
∏
ab

(mab)zab =
m10m01

m11
,

which corresponds to Eq. (2.2) that led to the LP-estimator, so for two sources λMPI =
λML. However, for our purpose a more important point is that the first element z11 in
z has a negative sign, which indicates that m11 is in the denominator of the expression
for m00. We have seen in Eq. (2.26), that in order to correct for bias it is important to
identify which elements of n are in the denominator.

This relation between zab and the LP-estimator also holds for zabc and the SAT, 2PD
and 1PD ML-estimators, as defined in Eq. (2.21), (2.22) and (2.23). This can be seen
when we specify

mLLM, MPI
000 =

∏
abc

(mabc)
zLLM
abc ,

where zLLM
abc depends on the design matrices for restricted log-linear models XLLM

abc as
defined below Eq. (2.20). The relation between both estimators is further discussed in
Frome, Kutner, and Beauchamp (1973), who show that under the Poisson assumption,
the maximum likelihood-estimator can be formulated as a properly weighted least
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2.3. Multiple systems estimation

Table 2.4: The value of zLLM and zLLM
<0 for each LLM.

Table 2.4a Table 2.4b

m zSAT z2PD z1PD zIND

m111 1 0 -1/3 -1/2
m110 -1 0 1/3 0
m101 -1 -1 -1/3 0
m011 -1 0 -1/3 0
m100 1 1 1/3 1/2
m010 1 0 1/3 1/2
m001 1 1 1 1/2

m zSAT
<0 z2PD

<0 z1PD
<0 zIND

<0

m111 0 0 -1/3 -1/2
m110 -1 0 0 0
m101 -1 -1 -1/3 0
m011 -1 0 -1/3 0
m100 0 0 0 0
m010 0 0 0 0
m001 0 0 0 0

squares estimator. For the models SAT, 2PD, 1PD and IND, the vector zLLM is given in
Table 2.4a.

Table 2.4a shows the positive and negative signs in the elements zLLM that corre-
spond to the counts nabc in the numerator and denominator in the SAT, 2PD and 1PD
ML-estimators in Eq. (2.21), (2.22) and (2.23). It is useful to define zLLM

<0 , which is a
vector equal to zLLM

abc for zLLM
abc < 0, and zero otherwise. zLLM

<0 is shown in Table 2.4b for
the SAT, 2PD, 1PD and IND model.

For the 2PD and 1PD model the relation between the MPI expression for m000 and
the ML-estimator is more intricate. For the 1PD model the MPI expression for m000 is

m1PD, MPI
000 =

m001 (m110m100m010)
1
3

(m111m101m011)
1
3

and the ML-estimator in Eq. (2.23) can also be written as

m̂1PD, ML
000 =

n001 (m110 +m100 +m010) /3
(m111 +m101 +m011) /3

.

The MPI expression for m000 is a fraction with geometric means of sets of mabc, both in
the numerator and the denominator, while the ML-estimator is a corresponding frac-
tion of arithmetic means of nabc. The same relation can be shown for the SAT and 2PD
model. Because a sum of Poisson variables is itself a Poisson variable, and Eq. (2.13)
shows that we should add 1 to a Poisson variable in the denominator, where zLLM

<0 pro-
vides a distribution of this +1. To illustrate this, in the bias-corrected estimator for the
1PD model in Eq. (2.29), 1 is added to the sum of the three Poisson variables n111, n101
and n011. The same result is obtained by subtracting −1/3 from each of them, which
corresponds to subtracting zLLM

<0 from n. Thus we have a simple formula that can be
used to obtain the Chapman-estimator in Eq. (2.10) and the bias-corrected estimators
in Eq. (2.21), (2.29) and (2.30), i.e.:

nLLM, Chap MSE, = n− zLLM
<0 (2.32)
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2. Bias correction in multiple systems estimation

For the IND model Eq. (2.32) implies we should replace n111 with n111+1/2 to obtain a
bias-corrected estimator. We cannot compare this result with a closed form expression
of the ML-estimator for the IND model, but an intuitive explanation for this adjust-
ment is that if in the denominator there is a Poisson variable multiplied by a 1/2 as is
suggested by the MPI expression, we should add 1 multiplied by a 1/2 to correct for
bias as well.

Concluding, in Eq. (2.32) we propose an adjustment that is based on the MPI and
can be used for any log-linear model with any number of sources. We have shown for
some examples (i.e., for two sources, and for three sources for the models SAT, 2PD
and 1PD) that this adjustment works in these instances. The adjustment also works
for the saturated model for any number of sources. We provide no proof for other
models, such as the model IND for three sources for which no closed form solutions
of ML-estimators exist, or restricted models for four or more sources. In the simulation
study in the next section we show that also for these models our procedure reduces
the bias to a large extent. Finally, we note that the Chapman MSE adjustment of nabc
depends on both the log-linear model and the exact inclusion pattern abc, which is
more extensive than the information other estimators use.

2.3.3.2 Multiple systems estimation simulation study with restricted models

Table 2.5 shows the results of a simulation study that tests the Chapman MSE-
estimators under the different scenarios presented in Table 2.2, and compares them
with the other estimators described in Section 2.3.1.1. The estimates are much more
accurate because they are based on the same log-linear model that underlies the gen-
eration of the contingency table. This is indicated by the LLMSi in the subscript.
Scenarios 10 − 12 are removed because they represent scenarios in which the satu-
rated model is the true model, and therefore the results of these scenarios are already
provided in Table 2.3.

Table 2.3, 2.10, 2.5 and 2.12 clearly show that, as could be expected, all estimates
that are based on the correctly specified model are less biased and have smaller SEs
and RMSEs than the estimates based on the saturated model. This difference in bias
is caused by the fact that in MSE, finite-sample bias is positive (i.e. m000 is over-
estimated on average) and estimates for models with more parameters have larger
variance (Bishop et al., 1975, p. 242). Variance in itself does not lead to biased esti-
mates, but it does inflate bias. With r = 1, . . . ,R and R the number of replications, this
inflationary effect can be seen when the bias is written as (

∑R
r=1 m̂000,r + nr)/R −N =

(
∑R

r=1 exp
(
λ̂r

)
)/R − exp(λ). When there is some positive bias in the estimate for λ,

a larger variance in λ̂ leads to a further increase of (
∑R

r=1 exp
(
λ̂r

)
)/R and therefore

inflates the bias. This inflation of bias due to increased variance also explains why
the Chapman MSE-estimator suffers less from overspecification, which is indicated
by the lower root mean squared errors. For example, scenario 7 in Table 2.10 and
2.12 shows that, when instead of the correctly specified two-pair dependence model,
the saturated model is assumed, the RMSE of the Chapman MSE-estimator increases
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2.3. Multiple systems estimation

Table 2.5: Simulation study with correctly specified log-linear models, with 100,000 replications, for
MSE scenario 1− 9, 13− 15 in Table 2.2.

S N n̄ N̄LLMSi , ML N̄LLMSi , EB N̄LLMSi , CFK N̄LLMSi , RL N̄LLMSi , Chap MSE

1 100 79.0 100.5∗∗∗ 100.7∗∗∗ 101.0∗∗∗ 100.7∗∗∗ 99.9∗∗∗

2 500 332.0 501.5∗∗∗ 501.1∗∗∗ 501.9∗∗∗ 501.3∗∗∗ 499.9
3 10,000 6,587.4 10,001.3∗∗∗ 10,000.8∗∗ 10,001.7∗∗∗ 10,001.0∗∗∗ 9,999.7

4 100 77.3 101.2∗∗∗ 101.2∗∗∗ 102.0∗∗∗ 99.9∗∗∗ 100.0
5 500 323.8 503.6∗∗∗ 502.7∗∗∗ 504.3∗∗∗ 499.8∗ 500.3∗∗

6 10,000 6439.5 10,003.1∗∗∗ 10,002.5∗∗∗ 10,003.7∗∗∗ 10,000.1 10,000.4

7 100 79.1 102.8∗∗∗† 102.8∗∗∗ 102.9∗∗∗ 100.8∗∗∗ 100.0
8 500 330.5 506.4∗∗∗ 506.2∗∗∗ 505.9∗∗∗ 502.3∗∗∗ 500.3∗∗

9 10,000 6,608.9 10,005.1∗∗∗ 10,005.0∗∗∗ 10,004.8∗∗∗ 10,001.6∗∗∗ 9,999.8

13 1,000 727.0 1,000.7∗∗∗ 1,000.0 1001.2∗∗∗ 1,001.6∗∗∗ 999.5∗∗∗

14 20,000 10,819.7 20,001.7∗∗ 19,997.3∗∗∗ 20,001.9∗∗ 20,002.0∗∗ 19,996.9∗∗∗

15 20,000 10,677.5 20,011.6∗∗∗ 20,010.2∗∗∗ 20,008.6∗∗∗ 20,005.2∗∗∗ 20,000.1

n̄ gives the mean number of observed units n over all replications. LLMSi in the superscript
indicates that the estimates are obtained under the correctly specified, corresponding log-
linear model, as given in the last column of Table 2.2. The superscripts ∗, ∗∗ and ∗∗∗ indicate that
we can reject N̂ est = N with a two-sided t-test for p-values = 0.05,0.01 and 0.001 respectively.
A † as superscript indicates that extremely high estimates due to failures were replaced with
the corresponding N̂EB,LLMSi for that replication.

from 12.3 to 24.9. The other bias-reducing estimators show a much larger increase in
RMSE, for example the RMSE of the estimator by Evans and Bonett (1994) increases
from 15.4 to 90.0 and the estimator by Rivest and Lévesque (2001) from 13.1 to 44.4.

Particularly interesting is the performance of the Chapman MSE-estimator in the
scenarios 1 − 3 and 13 − 14 in the second part of Table 2.5, where the correctly spec-
ified independence model is used for estimation. Because the independence model
corresponds to the Mt model as defined by Otis et al. (1978), for these scenarios the
estimator by Rivest and Lévesque can be directly compared with the Chapman MSE-
estimator, while for these scenarios the Chapman MSE-estimator has no justification
in a closed-form of the maximum likelihood-estimators. For scenarios 3 and 13− 14,
which have relatively large values for N , both estimators show small but statistically
significant bias. However, for scenario 1 and 2, with relatively small N , the Chap-
man MSE-estimator shows relatively much smaller bias than the other estimators,
including the RL-estimator. Finally, in scenario 15 for the correctly specified four-pair
dependence model, the Chapman MSE-estimator clearly outperforms the other esti-
mators as well, despite the large N . Together these results are further support for the
modification scheme in Eq. (2.32).

Finally, the estimator by Rivest and Lévesque (2001) performs clearly better than
the estimators by Evans and Bonett (1994); Cordeiro and McCullagh (1991); Firth
(1993) and Kosmidis et al. (2020), but still shows some small but significant bias for
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2. Bias correction in multiple systems estimation

most scenarios, including scenario 1 − 3 and 13 − 14, when using the independence
model for estimation.

2.4 Example: Number of homeless people in the Nether-
lands

A population size estimate of the homeless people in the Netherlands is published
annually by Statistics Netherlands. This estimate is an ML estimate that is based on
a MSE model that is discussed in detail in Coumans et al. (2017). The estimate is
based on a log-linear model that contains three sources and several (categorical) co-
variates, such as gender (g, 2 categories), age (a, 3 categories), place of living, in-
or outside one of the big four Dutch cities (p, 2 categories) and region of origin (o,
3 categories). Together there are 36 subgroups that have observed frequencies de-
noted as ngapo and an observed frequency with a specific inclusion pattern denoted as
nabc,gapo. Which sources, covariates and interactions between them are included in the
log-linear model, is the result of an Akaike information criterion (Akaike, 1974, AIC)
based model selection procedure that is explained in Coumans et al. (2017). Recent
work by Silverman (2020) suggests that other model selection approaches based on
Bayesian approaches could lead to more robust and stable results, but this is beyond
the scope of this paper.

In this practical example, for the years 2009 - 2018, 2020 and 2021, we replicate
the model selection and estimation procedure as explained in Coumans et al. (2017).
Data for 2019 is unavailable. This gives a series of annual ML estimates for the popu-
lation size of homeless people in The Netherlands. For each year, the log-linear model
that was used to calculate the ML estimate is also used to calculate the corresponding
Chapman MSE estimate. This allows us to calculate the difference between the ML
and Chapman MSE estimates, all other factors held constant, in a practical example.

In Figures 2.1a-c below we show, respectively, the original ML estimates and the
Chapman MSE estimates of the total number of homeless people, the total number of
homeless men and the total number of homeless women, including their two-sided
95% confidence intervals. Note that each figure has its own scale on the y-axis.

Figure 2.1a shows ML and Chapman MSE estimates of the total number of home-
less people over time, together with their confidence intervals. The ML estimates are
between a minimum of 9.5% and a maximum of 25.5% larger than the Chapman MSE-
estimator. The confidence interval of the Chapman MSE-estimators is clearly smaller.
Figure 2.1b and 2.1c show that the total annual difference between both estimators,
as was observed in Figure 2.1a, is not proportionally divided over men and women.
In fact, the Chapman MSE-estimator has, relatively, a much larger impact on the es-
timate of the number of homeless women, which is the smaller group. For women
the difference between the estimates is between a minimum of 19.5% in 2017 and a
maximum of 51.2% in 2018.

In this practical application the impact of using the Chapman MSE-estimator in-
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2.4. Example: Number of homeless people in the Netherlands

Figure 2.1: Total number of homeless people, homeless men and homeless women in the Netherlands
over the period 2009-2018 and 2020-2021.
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2. Bias correction in multiple systems estimation

stead of the ML-estimator is larger than the impact we have seen in the simulation
studies. The reason for this difference is twofold. First, the scenarios in the simulation
studies were set such that the probability of estimation failures was very small, which
led to a mean coverage (i.e. n̄/N ) that was large compared to the coverage in our exam-
ple of homeless people. Second, the MSE model to estimate the number of homeless
people involves the use of (categorical) covariates to control for heterogeneity in inclu-
sion probabilities. Because for some homeless people their background characteristics
are missing, the estimation procedure uses an expectation–maximization (EM) algo-
rithm to impute missing data see Coumans et al. (2017) for further details, which for
some inclusion patterns may lead to observed frequencies between zero and one. To
see why this is important we zoom in on the underlying subgroup estimates for men
and women in the year 2021 presented in Table 2.6 below.

Table 2.6 presents 18 subgroups indicated by Gapo for both men and women. For
each subgroup we show both the total observed count ngapo and the observed count
n101,gapo for inclusion pattern 101. This specific inclusion pattern is shown because
the selected log-linear model is a 2-pair dependence model, for which Table 2.4 tells
us that nChap

101 = n101 + 1 is the only adjusted observed frequency, while the other ele-

ments in n
Chap
abc are equal to nabc. The difference between n101,gapo and n

Chap
101,gapo should

therefore explain the difference between NML
gapo and N

Chap
gapo . This difference is shown in

the columns ∆Mapo = N̂
2PD, Chap-3
Mapo − N̂ 2PD, ML

Mapo and ∆Wapo = N̂
2PD, Chap-3
Wapo − N̂ 2PD, ML

Wapo .

Table 2.6: Estimated number of homeless people in The Netherlands in 2021, separated by men and
women and 18 subgroups based on age, living in- or outside one of the four big Dutch cities and country
of origin.

Men Women

Gapo nMapo n101,Mapo N̂ 2PD, ML
Mapo N̂

2PD, Chap-3
Mapo ∆Mapo nWapo n101,Wapo N̂ 2PD, ML

Wapo N̂
2PD, Chap-3
Wapo ∆Wapo

1 1,956 134.07 4,279 4,263 -16 388 8.10 787 678 -109
2 1,283 45.78 4,687 4,464 -223 211 4.03 993 750 -243
3 1,130 37.41 4,458 4,304 -154 164 2.56 760 582 -178
4 516 17.62 1,006 978 -28 97 1.52 170 147 -23
5 496 9.56 2,241 2,065 -176 76 0.90 333 245 -88
6 491 41.02 1,316 1,278 -38 123 3.65 325 264 -61
7 436 36.36 1,072 1,055 -17 102 2.82 243 202 -41
8 350 12.83 1,388 1,302 -86 52 1.11 279 204 -75
9 319 11.04 1,224 1,133 -91 57 1.24 314 226 -88

10 241 7.72 555 533 -22 45 0.66 92 77 -15
11 237 6.07 1,222 989 -233 47 0.63 311 198 -113
12 224 4.84 952 890 -62 35 0.46 142 107 -35
13 201 11.23 685 586 -99 55 1.02 181 130 -51
14 106 2.71 329 274 -55 25 0.29 66 48 -18
15 95 7.82 287 275 -12 28 0.90 89 70 -19
16 91 1.44 561 435 -126 17 0.17 104 65 -39
17 46 1.15 252 194 -58 9 0.14 72 45 -27
18 35 1.90 150 120 -30 11 0.24 50 34 -16

Total 8,253 390.57 26,664 25,138 -1,526 1,542 30.44 5,311 4,072 -1,239
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2.5. Discussion

When we compare the columns ∆Chap-ML
Mapo and ∆

Chap-ML
Wapo in Table 2.6, we see that de-

spite the fact that observed counts of men are larger than those of women, differences
in counts of subgroups of men and women are very similar. This can be explained
by the smaller observed frequencies for women with inclusion pattern 101, that are
sometimes even between zero and one, as can be seen in the columns of n101,Mapo
and n101,Wapo. Adding 1 to such a small number has a relatively large impact on the
population size estimate.

Finally, we note that the Chapman MSE estimates follow a similar trend to the ML-
estimates, which is relevant in practice. Only for the period 2018 − 2020 where the
ML-estimate is a decrease while the Chapman MSE-estimate is an increase. This might
be due to the large ML-estimate in 2018. Furthermore, the estimates and conclusions
presented in this section should be treated with some care because for the log-linear
model that was used, a regularity condition such as the one for DSE given by Chapman
in Eq (2.12) may play a role. The fact that such a regularity condition for MSE is
unknown is unfortunate, because some of the subgroups are quite small and so the
risk of not meeting a potential regularity condition is not unrealistic. The data on
homeless people in The Netherlands that were used for this section is not publicly
available due to legal restrictions.

2.5 Discussion

In this paper we have derived the Chapman MSE-estimator and we have shown that,
in terms of mean-bias correction, it outperforms a set of other bias-reducing MSE-
estimators known in literature. We showed both mathematically and in a simulation
study that the mean-bias correction in DSE is best achieved by means of the DSE es-
timator proposed by Chapman (1951) and later by Rivest and Lévesque (2001). Fur-
thermore we showed how the Chapman-estimator can be derived in a different way
than Chapman did. This derivation was extended towards multiple sources, which
led to the Chapman MSE-estimator for saturated models. We developed the Chap-
man MSE-estimator such that it can be applied under both a saturated and restricted
model. This generalisation was achieved by using the MPI and for a small set of
different restricted models it was proven mathematically that this approach leads to
bias-corrected estimators. We used a simulation study to investigate bias in a larger
set of restricted models and we found that also for these models the Chapman MSE-
estimator shows little or no bias.

The mathematical derivations and simulation studies in this paper show that
for any restricted model with three sources or a saturated model with any number
of sources, the Chapman MSE-estimator is a bias-corrected estimator. We suspect
that this result can be generalised towards any restricted model with any number of
sources, although we did not provide a mathematical proof. We think that further
research that proves, or disproves, our suspicion would be valuable.

The simulation studies also show that the Chapman MSE-estimator outperforms
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other estimators in terms of a smaller size of bias and SE, and thus RMSE, in par-
ticular when the estimated log-linear model has more interaction parameters. This
advantage is important because in practice the model that is used is usually the re-
sult of some model selection procedure, which does not guarantee the selection of the
correct model. When such a selection procedure selects a model with irrelevant pa-
rameters, this increases the variance of the population size estimate. This increase is
less for the Chapman MSE-estimator than for the other estimators considered.

In Section 2.4 we applied the Chapman MSE-estimator to estimate the number of
homeless people in The Netherlands for a series of years and compared these estimates
with the ML estimates. For each year both estimates are based on the same log-linear
model as discussed in Coumans et al. (2017). This comparison showed that the impact
of bias-correction can be substantial, e.g., in our example the use of the Chapman
MSE-estimator led to a Chapman MSE estimate that was between 9.3% and 25.4%
lower for the total number of homeless people in The Netherlands, as compared to
the corresponding ML-estimator. This relative difference became even larger, going
up to 51%, when we zoomed in on the subgroup of women.

The simulation studies and the example in Section 2.4 show that the difference be-
tween the Chapman MSE- and the standard ML-estimator can be substantial. This
raises the question whether finite-sample bias correction should not have a more
prominent role in the discussion on the robustness of MSE methodology and the accu-
racy of MSE estimates, which continues up till today (see e.g. Silverman, 2020; Binette
& Steorts, 2022).

Finally, a topic that received little or no attention in MSE literature, but what
would be valuable to investigate, is regularity conditions. Chapman gave a regularity
condition for his DSE estimator, but similar regularity conditions for MSE-estimators
are unknown. This topic is also beyond the scope of this paper but we think that
this is an important remaining problem for MSE-estimators in general, including the
Chapman MSE-estimator.

Software

All simulation studies in this paper are performed in the statistical software program
R (R Core Team, 2022). All estimates are obtained with the glm() function, with
family = poisson(link = "log"). Differences between the LP, ML, Chapman,
Bailey, EB, RL and Chapman MSE estimates are the sole result of different input vec-
tors nest. For the IND model the estimation results for the RL-estimator were veri-
fied with the function closedp.bc() with m = "Mt" from the R-package Rcap-
ture (Rivest, 2022). The Cordeiro-, Firth- and Kosmidis-estimator (N̂CFK) were
also calculated with the glm() function, but with the additional settings method
= "brglmFit" and type = "correction", type = "AS mean" and type =
"MPL Jeffreys", respectively, which are part of the R-package brglm2 (Kosmidis
& Kenne Pagui, 2023). Code for the simulation studies presented in this paper is avail-
able at
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https://github.com/DaanZult/ChapmanMSE/.
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2.6 Appendix

2.6.1 Comparison of Taylor approximation and Stephan’s inverse
factorial approximation

The Taylor expansion that was also used by Bailey (1951) is a widely used approx-
imation approach, but it is not always the most accurate or efficient method to ap-
proximate a function. To illustrate that the inverse factorial (IF) expansion (see e.g.
Stephan, 1945) used by Chapman (1951) gives more accurate results for E

[
1
n11

]
, given

the same number of expansion terms, than a Taylor expansion, we provide a straight-
forward simulation study. With r replications of n11,r ∼ Poisson(m11), we can write
the five-term Taylor expansion and IF approximations for E

[
1
n11

]
as

Taylor→ E
[

1
n11

]
= E

[
1

m11
− (n11 −m11)

m2 +
(n11 −m11)2

m3
11

−

(m11 −n11)3

m4
11

+
(m11 −n11)4

m5
11

− . . .
]

where m11 will be estimated by m̂11 =
∑

r n11,r /r, and

IF→ E
[

1
n11

]
≈

∑
r

(
1

n11,r + 1

)
/r +

∑
r

(
1(

n11,r + 1
)(
n11,r + 2

)) /r+
∑
r

(
2(

n11,r + 1
)(
n11,r + 2

)(
n11,r + 3

)) /r+
∑
r

(
6(

n11,r + 1
)(
n11,r + 2

)(
n11,r + 3

)(
n11,r + 4

)) /r+
∑
r

(
24(

n11,r + 1
)(
n11,r + 2

)(
n11,r + 3

)(
n11,r + 4

)(
n11,r + 5

)) /r
Table 2.7 shows the results for both approximation methods and their difference ∆

for m11 = 20 and r = 1,000,000. Table 2.7 shows that, for n11,r ∼ Poisson(mr = 20)
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Table 2.7: Simulated approximations of E
[

1
n11

]
, with n11,r ∼ Poisson(m11 = 20) and r = one million,

which gives E
[

1
n11

]
≈

(∑
r

1
n11,r

)
/r = 0.052805.

# Terms Taylor ∆(E
[

1
n11

]
−Taylor) IF ∆(E

[
1
n11

]
− IF)

1 0.050001 0.002804 0.050006 0.002799
2 0.050001 0.002804 0.052507 0.000298
3 0.052505 0.000299 0.052757 0.000048
4 0.052379 0.000426 0.052794 0.000010
5 0.052763 0.000042 0.052802 0.000003

and five or less expansion terms, the IF approximation method used by Chapman
(1951) gives a more accurate approximation of E

[
1
n11

]
≈

(∑
r

1
n11,r

)
/r = 0.052805 than

the Taylor approximation method.

2.6.2 Second-order Taylor approximation of the Lincoln-Petersen-
estimator

Here we present an alternative derivation of a bias-reducing LP-estimator. This
derivation shows that the Chapman-estimator can be approximated with the well-
known Taylor approximation. We write the LP-estimator as a Taylor series approxi-
mation. When we start with some function f (n) of the three random variables n11,n10
and n01, and approximate it around m, this gives:

f (n) = f (m) + (n−m)⊤∇f (m) +
1
2

(n−m)⊤∇∇f (m)(n−m) +O(||(n−m)⊤||)2)

with

∇f (m) =


∂f (n)
∂n11
∂f (n)
∂n10
∂f (n)
∂n01


m

and

∇∇f (m) =


∂2f (n)
∂n2

11

∂2f (n)
∂n11∂n10

∂2f (n)
∂n11∂n01

∂2f (n)
∂n10∂n11

∂2f (n)
∂n2

10

∂2f (n)
∂n10∂n01

∂2f (n)
∂n01∂n11

∂2f (n)
∂n01∂n10

∂2f (n)
∂n2

01


m
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Replacing f (n) with m̂LP
00 = n10n01

n11
gives:

∇f (n) =


−n10n01

n2
11n10

n11n01
n11


and

∇∇f (n) =


2n10n01

n3
11

−n01
n2

11
−n10
n2

11

−n01
n2

11
0 1

n11

−n10
n2

11

1
n11

0

 .
Therefore, because E[(n−m)⊤∇f (m)] = 0, we find:

E
[
n10n01

n11

]
≈m10m01

m11
+

Cov(n10,n01)
m11

− m10Cov(n11,n01)

m2
11

− m01Cov(n11,n10)

m2
11

+

m10m01Var(n11)

m3
11

. (2.33)

For the Poisson distribution we have Cov(nab,n,ab) = 0 and Var(nab) = mab, and
for the multinomial distribution we have Cov(nab,n,ab) = −Npabp,ab and Var(nab) =
Npab(1 − pab) with pab = mab/N . Then, for both nab ∼ Poisson(mab) and the joint set
(n11,n10,n01,n00) ∼Multinomial(m11,m10,m01,m00), Eq. (2.33) reduces to:

E
[
n10n01

n11

]
≈ m11m10m01 +m10m01

m2
11

=
m10m01

m11

m11 + 1
m11

. (2.34)

This implies that E
[
n10n01
n11

]
m11

m11+1 removes the second-order Taylor approximation bias
from the LP-estimator, which suggests that multiplying the LP-estimator with n11

n11+1 ,
which gives the Chapman-estimator, is an improvement over the LP-estimator.
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2.6.3 Tables with SEs and RMSEs

2.6.3.1 DSE

Table 2.8: The SEs and RMSEs for the simulation study presented in Table 2.1.

S SELP SEBailey SEEB/CFK SEChap/RL RMSELP RMSEBailey RMSEEB/CFK RMSEChap/RL

1 27.8† 20.8 25.8 21.9 28.3† 21.2 26.3 21.9
2 28.7 22.2 26.3 23.0 29.3 22.3 26.8 23.0
3 70.2 65.6 68.9 66.5 70.7 65.9 69.3 66.5
4 85.7 78.9 83.3 79.7 86.5 79.0 83.8 79.7
5 460.9 457.9 459.9 458.4 461.2 458.1 460.1 458.4
6 411.3 409.3 410.7 409.6 411.7 409.3 410.9 409.6

7 109.6† 45.8 104.2 48.8 118.9† 47.5 107.9 49.4

A † as superscript indicates that extremely high estimates due to failures were replaced with
the highest Chapman estimate in the simulation sample.

2.6.3.2 MSE with saturated models

Table 2.9: The SEs of the estimates for saturated MSE models, as presented in Table 2.3.

S N SESAT, ML SESAT, EB SESAT, CFK SESAT, RL SESAT, Chap MSE

1 100 61.7 58.8 48.4 38.2 24.1
2 500 104.4 102.9 101.5 94.4 89.9
3 10,000 363.5 363.4 363.3 362.2 361.5

4 100 80.3 77.0 62.7 46.8 26.4
5 500 111.7 109.5 107.3 99.7 94.5
6 10,000 373.7 373.6 373.4 372.2 371.5

7 100 90.6 88.1 65.2 44.2 24.9
8 500 156.5 150.3 143.0 127.9 106.2
9 10,000 391.4 391.2 391.0 389.6 388.6

10 100 83.6 80.8 61.9 43.9 24.1
11 500 138.3 133.4 129.3 112.4 104.0
12 10,000 392.4 392.2 392.0 390.6 389.7

13 1,000 1,280.3 1,270.4 851.1 1,271.7 286.9
14 20,000 4,328.8 4,272.2 4,116.3 4,303.4 3,730.5
15 20,000 7,684.4 7,578.6 7,325.1 7,650.6 4,724.0

A † as superscript indicates that extremely high estimates due to failures were replaced with
the highest Chapman MSE estimate in the simulation sample.
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Table 2.10: The RMSEs of the estimates for saturated MSE models, as presented in Table 2.3.

S N RMSEsSAT, ML RMSEsSAT, EB RMSEsSAT, CFK RMSEsSAT, RL RMSEsSAT, Chap MSE

1 100 63.1 60.1 49.6 38.3 24.1
2 500 106.7 105.3 103.9 94.6 89.9
3 10,000 363.9 363.8 363.7 362.2 361.5

4 100 82.1 78.5 64.0 46.9 26.4
5 500 114.5 112.2 110.0 100.1 94.5
6 10,000 374.1 374.0 373.8 372.3 371.5

7 100 92.9 90.0 66.6 44.4 24.9
8 500 159.8 153.4 146.1 128.3 106.2
9 10,000 391.9 391.8 391.6 389.6 388.6

10 100 85.5 82.5 63.2 44.1 24.1
11 500 141.4 136.6 132.6 112.8 104.0
12 10,000 392.9 392.8 392.7 390.7 389.7

13 1,000 1,296.7 1,285.4 861.6 1,284.9 287.0
14 20,000 4,422.3 4,357.7 4,180.5 4,385.8 3,730.5
15 20,000 7,799.2 7,686.2 7,413.8 7,752.8 4,724.1

A † as superscript indicates that extremely high estimates due to failures were replaced with
the highest Chapman MSE estimate in the simulation sample.

2.6.3.3 MSE with restricted models

Table 2.11: The SEs of the estimates for the correct restricted MSE models, as presented in Table 2.5.

S N SELLMSi , ML SELLMSi , EB SELLMSi , CFK SELLMSi , RL SELLMSi , Chap MSE

1 100 8.1 8.0 8.1 8.0 7.9
2 500 28.6 28.4 28.6 28.4 28.3
3 10,000 126.1 126.0 126.1 126.1 126.0

4 100 11.6 11.3 11.5 10.8 10.9
5 500 41.4 40.9 41.2 40.2 40.4
6 10,000 164.4 164.3 164.4 164.2 164.2

7 100 15.8 15.1 14.3 13.1 12.3
8 500 48.6 48.2 47.7 46.8 46.0
9 10,000 192.7 192.6 192.5 192.4 192.2

13 1,000 30.1 29.9 30.1 30.1 29.9
14 20,000 255.6 255.4 255.5 255.5 255.4
15 20,000 414.4 414.3 414.1 413.9 413.6

A † as superscript indicates that extremely high estimates due to failures were replaced with
the highest Chapman estimate in the simulation sample.
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Table 2.12: The RMSEs of the estimates for the correct restricted MSE models, as presented in Table
2.5.

S N RMSELLMSi , ML RMSELLMSi , EB RMSELLMSi , CFK RMSELLMSi , RL RMSELLMSi , Chap MSE

1 100 8.1 8.0 8.2 8.1 7.9
2 500 28.6 28.4 28.6 28.5 28.3
3 10,000 126.1 126.0 126.1 126.1 126.0

4 100 11.7 11.4 11.7 10.8 10.9
5 500 41.6 41.0 41.4 40.2 40.4
6 10,000 164.4 164.3 164.4 164.2 164.2

7 100 16.0 15.4 14.6 13.1 12.3
8 500 49.0 48.5 48.1 46.9 46.0
9 10,000 192.7 192.7 192.6 192.4 192.2

13 1,000 30.1 29.9 30.1 30.1 29.9
14 20,000 255.6 255.4 255.5 255.5 255.4
15 20,000 414.6 414.4 414.2 413.9 413.6

A † as superscript indicates that extremely high estimates due to failures were replaced with
the highest Chapman estimate in the simulation sample.
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Chapter 3

Connecting Correction Methods for
Linkage Error in Capture-Recapture

A commonly known problem in population size estimation using registers,
is that registers do not necessarily cover the whole population. This may be be-
cause they intend to cover part of the population (e.g., students), due to adminis-
trative delay or because part of the target population is not registered by default
(e.g., illegal persons). One of the methods to estimate the population size in the
presence of undercount is the capture-recapture method that combines the in-
formation of two or more samples. In the context of census estimation registers
are used instead of samples. However, the method assumes that perfect link-
age between the registers can be achieved. It is known that this assumption is
often violated. In the setting of evaluating the population coverage of a census
using a post-enumeration survey, a correction for linkage error was proposed.
That correction was later generalized by relaxing some of the newly introduced
conditions. However, the new correction method still implicitly assumed that
the two registers are of equal size. We introduce a further generalization that in-
cludes both previously mentioned correction methods and at the same time deals
with registers of different sizes. Specific parameter settings will correspond to
the different correction methods. We show that the parameters of each method
can be chosen such that the resulting estimates all equal the traditional Petersen
estimate (1896) that would theoretically be obtained under truly perfect linkage.

This chapter is published in Journal of Official Statistics: de Wolf, P-P. (PPdW), van der Laan,
J. (JvdL) & Zult, D.B. (DZ), 2019. Connecting Correction Methods for Linkage Error in Capture-
Recapture. Journal of Official Statistics, Vol. 35, No. 3, 2019, pp. 577–597 http://dx.doi.org/

10.2478/JOS-2019-0024. Author contributions: PPdW, JvdL and DZ discussed the problem and
worked out the idea. PPdW and JvdL did the analysis, PPdW wrote most of the text and JvdL and
DZ discussed and edited the text.
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3. Connecting Correction Methods for Linkage Error in Capture-Recapture

3.1 Introduction

The capture-recapture methodology goes back at least to the ecological setting of es-
timating the size of fish and wildlife populations. The basic idea is to take a first
sample (capture), tag or mark the captured animals, return them to their population
and take a second sample (recapture). Among the recaptures, some of the animals
will be marked, others not. The relation between the tagged and non-tagged animals
in the second sample is used to construct an estimate of the total population size (see
e.g. Petersen, 1896 and Lincoln, 1930). Since then it was not only used to estimate
animal population sizes, but also to estimate undercount in traditional censuses (for
an overview see e.g. Fienberg, 1992). More recently, it was used in Gerritse, Bakker,
de Wolf, and van der Heijden (2016a) to estimate the undercoverage of registers used
for the Dutch Census.

In the original setting, one of the assumptions is that the units can be classified
without error to belong to the first sample only, the second sample only or the overlap
of the two samples. This assumption was likely to be met, when the marking of the
units in the first sample would stick to the animals during the second sampling (no
tag-loss). In the setting of estimating the undercount of a register, this assumption
is translated to the assumption that units in the two registers can be linked without
error, i.e., all links are found and no erroneous links are established. With linking
two records, we mean deciding that those records represent the same population unit.
Whenever the registers both contain the same reliable unique identifiers like a Social
Security Number, it is likely that this assumption holds. However, not all registers
contain such a uniform unique identifier. Actually, when considering undercoverage
of registers, one can not rely on the existence of such unique identifiers only. Indeed,
in order to find units that are not properly registered, one should also use sources that
do not have such a unique identifier for all units.

In case a unique identifier is not available, one often relies on probabilistic record
linkage techniques like the one developed in Fellegi and Sunter (1969). In this setting
the assumption of perfect linkage is not likely to be met in practice. Especially in a
large population, two individuals might for example have the same name, leading to
a false link, or one individual might be known under two different names, leading
to a missed link. This last case would be identical to tag-loss in a classical capture-
recapture setting, while the first case can only occur when tags or id-codes can be
passed around within the population of interest.

In the presence of linkage errors, the standard capture-recapture estimate of the
unknown population size can be biased, (see e.g. Gerritse, Bakker, Zult, & van der
Heijden, 2016b). In Ding and Fienberg (1994) the standard capture-recapture estima-
tor is adjusted to correct for linkage errors. In that paper, they considered the situation
where a post-enumeration survey (PES) is used to estimate the undercoverage of the
population census. See e.g. Wolter (1986) for an explanation of using a PES. Ding
and Fienberg assume that the false match that affects the population size estimator
most, occurs when a record from the subset of the PES that should not be matched is
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3.1. Introduction

actually linked to a record from the subset of the census that should not be matched.
In other words, they assume a one-way linkage error, linking PES records to census
records. Moreover, they assume that all records in the PES will be linked to a record
in the census. Cadwell, Smith, and Baughman (2005) also correct for linkage errors,
but they use the concept of ‘potential linkage’ in a bootstrap procedure to construct a
population size interval. Their method is potentially interesting when something like
a PES is not available.

Di Consiglio and Tuoto (2015) argue that in the setting of administrative data
sources, a one-way linkage direction is not guaranteed. That is, they allow for the pos-
sibility that a population unit residing in one administrative data source, but not in
the other, to be (incorrectly) linked to a unit in the other administrative data source,
irrespective of which data source is called ‘the one’ and which is called ‘the other’.
Hence, they propose a two-way correction for linkage error. In their paper, they as-
sume that the probability of a false match is equal in both linkage directions. We
will call this the symmetric two-way correction for linkage error. Using the same er-
ror probability in both directions, is appropriate in case the two administrative data
sources are (approximately) of equal size.

When two registers differ considerably in size, a further extension would be to al-
low for different error probabilities in the two linkage directions. This would be even
more evident when (forced) one-to-one linkage1 is used. Since the largest source con-
tains units that are not present in the smaller source, in case of one-to-one linkage a
subset of those units can never be linked; there are just not enough ‘target’ records in
the smaller source. Records that will never be linked, will also never be linked incor-
rectly. In other words, a unit in the largest administrative data source has a smaller
chance of being falsely linked with a unit in the smaller administrative data source,
compared to the other way around. In the current paper we will thus introduce an
asymmetric two-way correction for linkage error. The formulation of this asymmet-
ric two-way corrections has three parameters. Choosing specific values for those pa-
rameters, the formula can cover the one-way correction and the symmetric two-way
correction as well.

The outline of the paper is as follows. We start with explaining the general set-
ting of capture-recapture and probabilistic linkage. In section 3.3 we briefly state
the non-corrected estimator, the one-way corrected estimator, the symmetric two-way
corrected estimator and an asymmetric two-way corrected estimator. The formula of
the asymmetric two-way correction can be viewed as a general estimator in the sense
that all introduced estimators can be expressed with this formula. Finally, we unify
all estimators by choosing specific ‘optimal’ parameters. The following section, Sec-
tion 3.4, shows some simulation results using publicly-available fictitious data on the
UK population census. In Section 3.5 we draw conclusions and the appendices contain
some technical details.

1One-to-one linkage here means that a record from PES is allowed to be linked to one and only one
record from the census. Some linkage procedures do not ensure this by default.
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3.2 General setting

Let us first introduce the notation that will be used throughout the remainder of this
paper. We try to stay close to the notation used in Ding and Fienberg (1994) and Di
Consiglio and Tuoto (2015). We also state the general assumptions underlying the
capture-recapture methodology when applied with two registers. Note that we will
only discuss the situation of two registers that are linked using probabilistic record
linkage methods.

3.2.1 Capture-recapture with two registers

Let R1 and R2 denote two registers containing units from a common population X of
unknown size NX . Assuming we can identify population units to belong to either one
or both of the registers, we get Table 3.1 and Table 3.2. In Table 3.1 the numbers corre-
spond to the unobservable true population counts, whereas the numbers in Table 3.2
are the observed counts after the linkage process has taken place and thus depend on
the used linkage procedure.

In the tables, the first subscript denotes whether or not a population unit resides
in R1 and the second subscript whether or not a population unit resides in R2. So,
e.g., N10 denotes the (unobserved) number of population units that does reside in R1
but not in R2. Note that, assuming no duplicates in each Ri , n1+ = N1 is the size of R1,
n+1 = N2 the size of R2. Moreover, N¬i denotes the number of units in the population
that do not reside in Ri , i.e., N¬1 = NX −N1 and N¬2 = NX −N2. Even after the linkage
process has taken place, we still cannot observe population units that are included in
neither register (i.e., N00). That means that N¬1 ≥ n01 and N¬2 ≥ n10.

unit in R2
yes no

unit in R1
yes N11 N10 N1
no N01 N00 N¬1

N2 N¬2 NX

Table 3.1: Counts based on population

unit in R2
yes no

unit in R1
yes n11 n10 n1+
no n01 0 n01

n+1 n10 n++

Table 3.2: Counts based on linkage process

Using similar notation, we can write the probability that a population unit resides
in register Ri as pi and decompose those probabilities as follows: p1 = p11 + p10 and
p2 = p11 + p01.

The general assumptions in capture-recapture estimation are:

• The population X is closed, i.e., units can neither enter nor leave the population
during the capture-recapture experiment.

• There are no erroneous captures, i.e., only units from X can be captured.
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• There are no duplicates in either register, i.e., units can only be captured once
per register.

• The event that a unit resides in R1 is independent of the event that a unit resides
in R2.

• The probability that a unit resides in Ri is the same for all units in X .

• There is no error in allocating the units to R1, R2 or both.

These assumptions imply that N11/N1 = N2/NX or equivalently, NX = (N1N2)/N11.
Hence, under perfect conditions a natural estimator would be the one introduced in
Petersen (1896): N̂X = (n1+n+1)/n11. See Subsection 3.3.1 as well.

3.2.2 Probabilistic record linkage

The probabilistic record linkage technique we will assume in this paper is the one
described in Fellegi and Sunter (1969). In their approach, they consider the set of
all possible pairs (a,b) of records from R1 and R2: {(a,b) | a ∈ R1 and b ∈ R2}. They
decompose that set into two disjunct sets. SetM consisting of all pairs of records of
matches and set U of all pairs of records of non-matches. Hence, e.g., a pair (a,b) in
the set U of non-matches should consist of a record a from register R1 and a record
b from R2 where a and b refer to two different population units. See Figure 3.2 in
Appendix 3.6.1 for a graphical representation of the setsM and U .

Fellegi and Sunter then describe a model to decide whether an observed pair of
records should be allocated toM or to U . To that end they use so called comparison
functions that assign a value to a pair indicating the amount of similarity between
the two records. For example, in case of personal data, a comparison function could
assign a value zero whenever the name of the person of record a is not exactly equal to
the name of the person of record b, and a value of one whenever the names are exactly
equal. Obviously, this can be more elaborate, assigning a value between zero and one
in case of small spelling mistakes. Different comparison functions can be applied to
different variables within a record, which would result in a comparison vector.

Selecting a pair of records at random from all possible pairs, the comparison func-
tion applied to that selected pair is a random variable. They define the so-called
m-probability as the probability that a certain value of the comparison function is
found among a pair of records that should belong to the setM of matches and the u-
probability as the probability that a certain value of the comparison function is found
among a pair of records that should belong to the set U of non-matches. Using those
probabilities, they assign weights to each possible pair and say that a pair of records is
linked whenever the weight is above a some threshold and not-linked whenever that
weight is below that threshold. Since this is defined at the level of pairs of records,
it is possible that several records from register R1 are said to be linked to the same
record in register R2; whenever a pair has a weight above the threshold, it will be said
to be linked. In practice, often a one-to-one linkage is then enforced. One of those
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pairs is selected and designated to be a link, while the other pairs are considered to be
non-links despite their weight being above the threshold.

In their paper, Fellegi and Sunter consider two error probabilities; the probability
of a false link (assigning a pair of records toM where it should be assigned to U ) and
the probability of a false non-link (assigning a pair of records to U where it should be
assigned toM). Note that these probabilities are thus defined at the level of pairs of
records and not on the level of individual records. In the description of the correction
methods (see Section 3.3) error probabilities are defined at the level of individual
records. To be able to discuss the correction methods for linkage error, it is convenient
to decompose our registers Ri each into two disjunct sets Mi and Ui . Now Mi consists
of all unique records from register Ri that should appear in a pair of matches and Ui
of all other unique records from register Ri . Figure 3.2 in Appendix 3.6.1 graphically
shows the differences between the setsM, U , Mi and Ui .

Linking registers with many records would lead to a huge number of pairs. Un-
der these circumstances a technique known as blocking is often used to improve ef-
ficiency. With blocking, the registers are split into subsets that agree on one or more
highly discriminating identifiers and the linkage process is applied within each subset
separately. For the sake of simplicity, we will not address the use of blocking in the
current paper, since blocking would affect the (estimation of the) m-probabilities in a
complex way.

3.3 Estimation of the population size

In this section we will first briefly state the existing estimators for the population
size under no linkage error, one-way error correction and symmetric two-way error
correction. At the end of this section we will introduce our new asymmetric two-way
error correction estimator.

Using the notation from Subsection 3.2.1, we assume that the number of individ-
uals that fall in the four interior cells of Table 3.2 have a multinomial distribution

(n11,n10,n01,NX −n++) ∼Mult(NX ,p11,p10,p01,p00)

where n++ = n11 + n10 + n01. Like in Ding and Fienberg (1994), we will derive the
estimators using the approach of maximizing the conditional likelihood as described
in Sanathanan (1972). In that approach the likelihood is written as a product of two
likelihoods L1(·) and L2(·), where L1(·) is the likelihood of (n11,n10,n01) for fixed n++
and L2(·) the likelihood of n++, given the cell-probabilities p11, p10 and p01. In the
conditional approach, first L1(·) is maximized to derive the maximum likelihood esti-
mates of the cell probabilities, after which the NX is found that maximizes L2(·), given
the values of p11, p10 and p01.

Using that E[n++] = E[n1+] + E[n+1] − E[n11] = (p1 + p2 − p11)NX , we derive the
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following generic formulation of an estimator of the population total

N̂X =
n++

p̂1 + p̂2 − p̂11
(3.1)

In the following subsections we will derive conditional ML estimators of the cell prob-
abilities under different linkage error scenarios.

3.3.1 No linkage error

Under independence and perfect linkage, we would have the following equations for
the probabilities of recording population units in the different observed counts nij

p11 = p1p2 (3.2)
p10 = p1 − p11 = p1(1− p2) (3.3)
p01 = p2 − p11 = p2(1− p1) (3.4)

Using the conditional ML approach we would get the estimators

p̂1 =
n11

n+1
and p̂2 =

n11

n1+

Plugging those estimators into (3.2) and (3.1), the estimator of the population total
then becomes after some straightforward calculations

N̂ P
X =

n1+n+1

n11
(3.5)

and this is essentially the estimator as described in e.g., Petersen (1896).

3.3.2 One way correction (OC)

In Ding and Fienberg (1994) the situation of linkage error is considered under the
assumptions that (using the notation as in Subsection 3.2.2)

(a) A matching pair between records from M1 and M2 remains a match with prob-
ability 0 < α ≤ 1.

(b) A record from M1 is matched incorrectly with a record in M2 with negligible
probability.

(c) A false match between records from M1 and U2 occurs with negligible probabil-
ity.

(d) A false match between records from U1 and M2 occurs with negligible probabil-
ity.
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(e) Each record from U1 will be linked with a record in U2 with common probability
0 ≤ β < 1.

The reason for assuming negligible probabilities for (b), (c) and (d) is that in those
cases two errors are made; both the correct match is not made and an incorrect match
is made. In cases (a) and (e) only one error is made. Note that the probabilities α and
β are now defined at record level, i.e., different from the probabilities in the Fellegi
and Sunter setting (see Subsection 3.2.2).2 Moreover, note that a large α implies more
missed links (in expectation), which in turn leads to an upward bias in the estima-
tor N̂X . A large β implies more false links (in expectation), which would lead to a
downward bias in N̂X .

Under the aforementioned assumptions we get the following relations

p11 = αp1p2 + βp1(1− p2) (3.6)
p10 = p1 − p11 = p1 −αp1p2 − βp1(1− p2) (3.7)
p01 = p2 − p11 = p2 −αp1p2 − βp1(1− p2) (3.8)

Note that the ‘one-way’ correction is reflected in (3.6); the second term on the right
hand side only shows the probability of falsely linking (β) a unit that resides in R1
(p1) but not in R2 (1 − p2). The probability of falsely linking a unit that resides in R2
but not in R1 is not considered, i.e., only one linkage direction is considered.

The conditional ML estimators are then given by Ding and Fienberg (1994)

p̂1 =
n11 − βn1+

(α − β)n+1
and p̂2 =

n11 − βn1+

(α − β)n1+

Plugging this into (3.6) and (3.1), the population total then can be estimated by

N̂OC
X =

(α − β)n11

n11 − βn1+

n1+n+1

n11
=

(α − β)n11

n11 − βn1+
N̂ P
X (3.9)

Note that this estimator depends on the parameters α and β which are unknown in
practice and should therefore be estimated. This will be discussed in Subsection 3.3.5.

3.3.3 Symmetric two-way correction (SC)

In Di Consiglio and Tuoto (2015) it is proposed to relax the assumption of the one-way
correction and to allow a two-way correction. This means that assumption (e) as given
in the description of the one-way correction, is relaxed to allow for a unit in U1 that is
not in U2 still to be (incorrectly) linked to a unit in U2 as well as to allow for a unit in
U2 that is not present in U1 still to be (incorrectly) linked to a unit in U1. Both events
occur with the same probability 0 ≤ β < 1.

2Note that the probabilities in the Fellegi and Sunter setting are sometimes also denoted by α and
β. These α and β are thus fundamentally different from the ones used in the current paper.
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This results in the following equations

p11 = αp1p2 + βp1(1− p2) + βp2(1− p1) (3.10)
p10 = p1 − p11 = p1 −αp1p2 − βp1(1− p2)− βp2(1− p1) (3.11)
p01 = p2 − p11 = p2 −αp1p2 − βp1(1− p2)− βp2(1− p1) (3.12)

Again, under certain regularity conditions and using the conditional likelihood ap-
proach, they derive that the ML estimators are then given by

p̂1 =
n11 − β(n1+ +n+1)

(α − 2β)n+1
and p̂2 =

n11 − β(n1+ +n+1)
(α − 2β)n1+

Plugging this into (3.10) and (3.1), the population total then can be estimated by

N̂SC
X =

(α − 2β)n11

n11 − β(n1+ +n+1)
n1+n+1

n11
=

(α − 2β)n11

n11 − β(n1+ +n+1)
N̂ P
X (3.13)

3.3.4 Asymmetric two-way correction (AC)

As a further relaxation of the assumptions, we propose to allow for different probabil-
ities of false links. This means that we allow for a unit present in U1 but not present
in U2 to be linked to a unit in U2 with probability 0 ≤ β1 < 1 and a unit present in U2
but not present in U1 to be linked to a unit in U1 but with probability 0 ≤ β2 < 1.

Now the equations for the probabilities of recording population units in the differ-
ent observed counts become

p11 = αp1p2 + β1p1(1− p2) + β2p2(1− p1) (3.14)
p10 = p1 − p11 = p1 −αp1p2 − β1p1(1− p2)− β2p2(1− p1) (3.15)
p01 = p2 − p11 = p2 −αp1p2 − β1p1(1− p2)− β2p2(1− p1) (3.16)

Under certain regularity conditions, we then get the following ML estimators

p̂1 =
n11 − β1n1+ − β2n+1

(α − (β1 + β2))n+1
and p̂2 =

n11 − β1n1+ − β2n+1

(α − (β1 + β2))n1+
(3.17)

See Appendix 3.6.2 for a discussion on admissibility to obtain proper values for the
probabilities p̂1 and p̂2 in the interval [0,1].

Plugging (3.17) into (3.14) and (3.1), the population total then can be estimated by

N̂AC
X =

(α − (β1 + β2))n11

n11 − β1n1+ − β2n+1

n1+n+1

n11
=

(α − (β1 + β2))n11

n11 − β1n1+ − β2n+1
N̂ P
X (3.18)

Note that this formulation covers all previous situations by choosing appropriate α,
β1 and β2

• Petersen estimator: α = 1 and β1 = β2 = 0

• One-way correction: α = α, β1 = β and β2 = 0

• Symmetric two-way correction: α = α, β1 = β2 = β
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3.3.5 Linking the correction methods

We consider the Petersen estimator in case of perfect linkage, i.e., knowing the true
N1, N2 and N11, the ‘optimal’ estimator and call it the ‘true Petersen estimator’ (TP)

NT P
X =

N1N2

N11
=
n1+n+1

N11

Equating the AC estimator to the true Petersen estimator, i.e., setting N̂AC
X = NT P

X , we
get the following relationship between the parameters

αN11 + β1(N1 −N11) + β2(N2 −N11) = αN11 + β1N10 + β2N01 = n11 (3.19)

Note that the left-hand side equals the expected number of links under the model for
linkage error.

Let us first explore this relationship under the unrealistic assumption that we
know the true N11. A natural choice for the parameter α would then be the frac-
tion of true population matches among the links from the linkage process. We will
denote this natural choice by α̌. Substituting that natural choice in (3.19) and setting
β1 = βOC and β2 = 0, we get

αOC = α̌ =
m11

N11
and βOC =

n11 −m11

N1 −N11

where m11 is the number of true population matches among the links from the linkage
process. We will call this choice of parameters the ‘optimal OC-parameters’.

In case of the symmetric two-way correction, using the natural choice for α and
setting β1 = β2 = βSC leads to

αSC = α̌ =
m11

N11
and βSC =

n11 −m11

N1 +N2 − 2N11

We will call this choice of parameters the ‘optimal SC-parameters’.
In case of the asymmetric two-way correction, we need an additional constraint to

uniquely define ‘optimal AC-parameters’. In practice, it is convenient to enforce one-
to-one linkage in the process. Under that assumption, we can derive the following
relationship between the parameters of the asymmetric two-way estimator (see the
Appendix 3.6.3 for a derivation)

β1 =
(αn+1 −n11)β2

(αn1+ −n11)− 2β2(n1+ −n+1)
(3.20)

In case we want to satisfy both (3.20) and (3.19), using the natural α̌ parameter, we
get either

αAC = α̌ =
m11

N11
, βAC

1 =
n11 −m11

2(N1 −N11)
and βAC

2 =
n11 −m11

2(N2 −N11)
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3.3. Estimation of the population size

or

α̃AC = α̌ =
m11

N11
, β̃AC

1 =
m11N2 −n11N11

m11(N2 −N1)
and β̃AC

2 =
m11N1 −n11N11

m11(N1 −N2)

where m11 again is the number of true population matches among the links from the
linkage process. For the second set of parameters (α̃AC , β̃AC

1 and β̃AC
2 ) it holds that the

β̃’s will be undefined in case N1 = N2. Moreover, when N1 , N2, one of them will be
negative, what contradicts the fact that the β̃’s should be probabilities. We will hence
call the first set of parameters the ‘optimal AC-parameters’. Note that, in the case that
register R1 is the largest and hence under one-to-one linkage N1 −N11 > N2 −N11, we
get βAC

1 < βAC
2 as expected (see discussion in Section 3.1).

According to the error correction model, a false match between a record from U1
with a record from U2 occurs with probability β1 and, independently, a false match
between a record from U2 with a record from U1 occurs with probability β2. Consid-
ering these events independently, we would count such a link twice. However, en-
forcing one-to-one linkage, these two events can only happen at the same time. This
is reflected in the factor 1/2 in the ‘optimal AC-parameters’ βAC

i .
Given the true N11 and choosing the parameters such that they satisfy equation

(3.19) would thus lead to the optimal estimator. Indeed, using the ‘optimal OC-
parameters’, the ‘optimal SC-parameters’ or the ‘optimal AC-parameters’ will all yield
the same estimator, i.e., the true Petersen estimator TP (with perfect linkage).

Unfortunately, in practice we do not know the true N11. Hence, we need to estimate
the α and βi parameters. As long as the estimated parameters satisfy relation (3.19),
the resulting estimates will be exactly the same for all estimators. This would for
example be the case when we would estimate the optimal parameters by plugging in
some estimate for N11, since N1, N2, n11 and m11 are the same in all settings. Indeed,
the resulting estimators would then be given by the simple formula

N̂X =
N1N2

N̂11
(3.21)

where N̂11 is a (consistent) estimator of the ‘true’ overlap between the two registers.
Another possibility would be to use a sample of one of the registers and determine

the true matches for that sample. Dividing that number by the sampling fraction
would yield a direct estimate of N11. Similarly, we could obtain direct estimates of
n11 and m11. Note that a direct estimate of n11 is needed instead of the original n11 to
prevent the estimated m11 getting larger than the original n11.

Yet another approach would be to use expert knowledge on the linkage errors,
e.g., asking experts to give estimates of the parameters. In that case, these expert
guesses would not necessarily satisfy relation (3.19) and the estimators could thus
yield different values.
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3.4 Simulations

Ideally one would like to evaluate estimation methods using ‘real life’ data. A common
way to do so, is to produce out-of-sample predictions. These out-of-sample predictions
can be assessed correctly whenever the true values are known at some point. This may
for example be the case when predicting a value that can actually be observed ‘in the
future’. However, in a capture-recapture setting this type of evaluation is not so easy,
simply because in general the unobserved population whose size is to be estimated
never shows up. Obviously, one could try to collect additional samples and count the
number of new records that show up, but one can never be sure that no individual was
left unobserved. Therefore, a more appropriate way to evaluate the effectiveness of
population size estimators in the capture-recapture setting is by means of a simulation
study.

Simulation studies of course have the disadvantage that they use artificial data.
This disadvantage can somewhat be reduced by using a (subset of) properly privacy
protected real data as an “artificial” population. That way, the data will contain real
linkage keys, real covariates and will have realistic measurement errors, while the
true population size is known.

Simulated data has the advantage that the population as well as the registers are
completely known; we know all the entries of Table 3.1 as well as Table 3.2. We can
thus easily determine how well the estimators approximate the true population size.
An additional advantage is that we can derive the ‘optimal’ Petersen estimator; the
Petersen estimator with truly no linkage error. Since this is the maximum likelihood
estimator using population information, the resulting estimate is the best one could
get. We will call this estimator the True Petersen estimator and use it as a benchmark
for our other estimators in our simulations. The True Petersen estimator is thus based
on the counts in Table 3.1 and does not equal the Petersen estimator one would get in
practice using the counts from Table 3.2.

Since ensuring that the parameter estimates satisfy relation (3.19) will result in the
same estimates of the population size for all estimators introduced in section 3.3, we
will concentrate on different ways to estimate the parameters. We will use different
methods to estimate N11 and m11 and plug those estimates into the formulas of our
‘optimal’ parameters, to show empirically that these estimates indeed lead to the same
estimate of the population total.

3.4.1 Setup

For the simulation we will make use of the fictitious data based on the UK population
census as created for the ESSnet DI (McLeod, Heasman, & Forbes, 2011). The ESSnet
DI was a European project on data integration (Record Linkage, Statistical Matching,
Micro Integration Processing), running from 2009 to 2011. We used three files from
that dataset; the files Person (a fictional list of persons, acting as the population), CIS
(fictional observations from a Customer Information System, being a combination of
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tax and benefit data) and PRD (fictional observations from the Patient Register Data
of the National Health Service). The Person dataset comprised of 26,625 individuals,
the CIS has a coverage probability of that population of τ1 = 0.930 and the PRD of
τ2 = 0.924.

To reduce computation time and to be able to apply the linkage process without
blocking, we repeatedly constructed a smaller population and corresponding registers
from those files, using the following steps

1. Draw a simple random sample without replacement of size 10,000 from Person.
This will be our population X with size NX .

2. Select the records from CIS that are present in population X to get register R1.

3. Select the records from PRD that are present in population X . Randomly select a
fraction f of those records to get register R2.

This way we obtained multiple instances of a population and the corresponding reg-
isters where one of them covers the population for about 93% and the other for about
f times 92.4%. Note that, for small values of f , the two registers differ substantially
in size.

In Di Consiglio and Tuoto (2015) several linkage scenarios were mentioned; a
bronze, a silver and a gold scenario. In the current paper we will only use their silver
scenario, i.e., we only use the full date of birth (day (DB_D), month (DB_M) and year
(DB_Y)) as key variables in the linkage process. We have chosen the silver scenario
because it allows for two types of linkage error. Firstly, two different individuals may
have the same date of birth and therefore may be falsely linked. Secondly, due to some
measurement errors, an individual that is in both samples may be falsely not linked.
Names and surnames would have been better discriminating identifiers, but in the
absence of those variables (e.g., due to privacy restrictions), the full date of birth is
still reasonably discriminating.

For the comparison function of the probabilistic record linkage process (see Sub-
section 3.2.2), we simply used ‘equality’ on all key variables separately. That is,
whenever two records a and b are compared, the comparison function for key vari-
able Vi is 1 when Vi(a) = Vi(b) or 0 when Vi(a) , Vi(b). Whenever Vi is missing
in at least one of the two records, the comparison function is defined to be 0 as
well. To perform the probabilistic record linkage as described in Subsection 3.2.2,
we used our own R-code. In that code we also forced one-to-one linkage. See
https://github.com/djvanderlaan/reclin for the R-package reclin that we used.

We implemented four methods to obtain values for the N11, m11 and n11 needed in
the formulas for the ‘optimal’ parameters

A Since we use simulated data, we know the true m11 and N11 by design. The n11
follows from the linkage process.

B Using the EM-algorithm, (see e.g. Herzog, Scheuren, & Winkler, 2007) on the
complete registers to estimate the posterior m-probabilities. Those posterior
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probabilities were used to estimate the m11 and N11. The n11 follows from the
linkage process.

C Using a sample of size 200 from the smallest register of which we determine
the true match-status. Using that sample we fitted a logistic model (see the
Appendix 3.6.4 for more information on the used model) and used that to pre-
dict the m-probabilities for the complete registers. Those posterior probabilities
were used to estimate the m11 and N11. The n11 follows from the original linkage
process.

D Using a sample of size 200 from the smallest register of which we determine the
true match-status. Using that sample we calculated the direct estimates of n11,
N11 and m11 for the complete registers.

In methods B and C, summing the posterior m-probabilities over all linked pairs
yields an estimate of m11, whereas summing those probabilities over all possible pairs
yields an estimate of N11. For a definition of posterior m-probabilities and why sum-
ming them is appropriate, we refer to Fellegi and Sunter (1969). Methods B, C and D
serve to illustrate how information available during an actual record linkage process
can be used to correct the estimator for linkage errors. As long as the sample used in
methods C and D is a representative sample of possible record pairs, these methods
should give unbiased estimates of N11, m11 and n11. Other methods or refinements
of these methods that might give more precise estimates are possible. However, find-
ing such refinements is not the main focus of this paper; we want to show that even
relatively simple methods can already correct for bias due to linkage errors.

With those estimated sizes, we then used the formulas for the ‘optimal’ parameters
as derived in section 3.3.5 to get estimates of the population size. As discussed in that
section, we expect to obtain exactly the same estimates for all approaches (OC, SC and
AC).

3.4.2 Results

For three different values of f , we performed 100 replications of the procedure men-
tioned in the previous subsection and, as expected, we indeed found that all ‘optimal’
parameters led to the same estimates in all four methods. In Table 3.3 the mean, me-
dian and standard deviation over the 100 replications is given for the difference be-
tween the estimates of the population size and the actual population size NX = 10,000,
for the estimators TP (method A, the benchmark), P (Petersen, using the counts from
the linkage process), EM (method B), model (method C) and sample (method D) . Note
that TP and P are both based on Petersen’s formula (Petersen, 1896), but TP is using
the (in practice unobservable) true population counts, whereas P uses the observed
counts.

The first thing to notice, is that the Petersen estimator using the observed counts
indeed leads to a heavily biased estimate of the population size, due to the linkage
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f TP−NX P−NX EM−NX model−NX sample−NX
0.15 mean 10.9 1,033.9 -1,874.2 -13.7 10.9

median 1.3 1,032.3 -1,767.4 -5.2 -18.2
st. dev. 68.0 124.7 1,211.5 283.2 212.9

0.50 mean 6.0 1,186.2 -1,826.8 12.3 11.6
median 4.5 1,186.8 -1,859.0 -30.1 29.4
st. dev. 32.6 58.4 794.2 263.9 202.2

0.90 mean 5.6 1,398.0 -1,805.8 19.4 53.8
median 6.7 1,397.5 -1,851.4 9.8 15.7
st. dev. 11.8 39.3 791.1 302.4 205.8

Table 3.3: Mean, median and variance of the difference with NX = 10,000 of each estimator over the
100 replications, for different relative sizes f of the second register, and sample size 200.

errors that are present. Moreover, we see that the EM-based estimator (method B) has
a very large variance compared to the other estimators and at the same time has a
larger bias. This indicates that this method is not well suited to be used for correcting
linkage error.

Varying the relative size of the second register (i.e., the f ) does not really influ-
ence the correction for linkage error. Indeed, the bias as well as the variance of those
estimators seems to be more or less the same in all situations.

In case the registers include a unique identifier for some of the records, the iden-
tifier could be used as an alternative for taking a sample, under the assumption that
the absence of the identifier is not (too) selective. When such a unique identifier is not
present, it could in practice be quite costly to determine the true match status of pairs.
Hence, probably only a small sample would be considered by a National Statistical In-
stitute and that’s why we used a relatively small sample from the second register for
methods C and D.

Figure 3.1 shows a smooth estimate of the distribution of the estimators for f = 0.5.
For the other values of f the distributions look similar. We did not plot the EM-based
estimator in this figure to be able to see more clearly the differences between the other
estimation methods.

The figure again shows clearly that the Petersen estimator using the counts from
the linkage process has a large bias (due to linkage error) and that the model and
sample estimators nicely correct for that. The TP estimates are obviously performing
the best, since they use the true knowledge about the number of matches. However,
in practice that estimator is not possible.

3.5 Conclusions

In estimating the population size using capture-recapture, linkage errors (false links
and missed links) affect the Petersen estimator. Indeed, the Petersen estimator then
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Figure 3.1: Distributions of the P, TP, model based and sample based estimators for NX = 10,000,
f = 0.5 and sample size 200.
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becomes heavily biased. To reduce that bias, some correction methods have been pro-
posed in the literature. These methods introduce some additional parameters that
should reflect the probability of occurrence of the two possible types of linkage er-
ror. They then model how linkage errors occur and use those error-probabilities to
incorporate that model into the estimator. In this paper we have introduced a general
formulation for such a correction method. That general formulation incorporates all
previously introduced correction methods of that type as special cases.

Looking more closely to the general correction method, it turned out that the pa-
rameters could actually be chosen in such a way that the general estimator equals the
optimal estimator; the Petersen estimator with known number of true matches. These
‘optimal’ parameters can be estimated using different methods. We have shown that
for at least two methods, the results improve the traditional Petersen estimator con-
siderably. Those two methods make use of a relatively small sample for which the
true match status of the records needs to be determined. More refined methods might
even improve more and lead to estimators with smaller variances.

We have shown that it is possible to chose ‘optimal’ parameters, such that all ad-
justment methods lead to exactly the same estimates. This reduces the need for mak-
ing a choice on the error linkage model. However, in case the probabilities are esti-
mated in a different way (e.g., by means of expert opinions), the different linkage error
models will lead to different estimates. We have not investigated this further in the
current paper.

In case it is not possible to make use of a sample to estimate the ‘optimal’ pa-
rameters, the general correction method could still be useful. In that situation, the
model for the occurrence of the linkage errors should be assessed to estimate the er-
ror probabilities. We would like to note that the model assumes that ‘double errors’
occur with negligible probabilities. With ‘double errors’ we mean errors like missing
a true match of a record and at the same time linking that record incorrectly to some
record in the other register. In estimating the error-probabilities this should be taken
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into account in some way, because in practice such double errors do occur and would
influence the error probabilities.

Using covariates or linking more than two registers would lead to more elaborate
methods to estimate the population size in the presence of undercoverage. In these
cases, more complex loglinear or Poisson models can be used to obtain a capture-
recapture estimate. Similarly, the Fellegi and Sunter based linkage procedure can also
be applied more elaborately, e.g., by making use of blocking(s). This would affect
the (estimates of the) posterior m-probabilities. In our view, the ideas expressed in
the current paper, as well as the introduced general formulation of the linkage error
correction methods, will lead to a better understanding of the implications of such
extensions and will be of help in deriving new, linkage error correcting, consistent
estimators of the population size.

3.6 Appendix

3.6.1 Sets defined in the setting of probabilistic record linkage

Let R1 be a register with records numbered {1,2,3, . . . ,10} and R2 a register with
records numbered {1,2,3, . . . ,15}. The total number of pairs (a,b) that can be con-
structed from the records of those registers is 10 × 15 = 150. Figure 3.2 shows all
possible pairs. Moreover, an example of the setM of pairs of matching records and
the set U of pairs of non-matching records is shown in that figure. In the example, the
number of pairs inM is 8 and the number of pairs in U is 142.

We can write each register as the union of two disjoint sets, Ri = Mi∪Ui , where the
disjoint sets of unique records are given by

M1 = {1,3,4,5,6,7,8,9} U1 = {2,10}
M2 = {2,3,4,6,8,9,10,13} U2 = {1,5,7,11,12,14,15}

3.6.2 Admissibility of asymmetric two-way correction estimators p̂i
The estimators for the probabilities pi in case of the asymmetric two-way correction
approach should obviously be within [0,1]. This puts some restrictions on the param-
eters α, β1 and β2.

To ensure that the estimators are non-negative, straightforward calculations lead
to the condition that either

β1n1+ + β2n+1 ≤ n11 and β1 + β2 < α (3.22)

or

β1n1+ + β2n+1 ≥ n11 and β1 + β2 > α (3.23)
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Figure 3.2: Graphical representation of the sets of pairs defined in subsection 3.2.2
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Additionally, ensuring that both probabilities are not larger than one, leads under
(3.22) to the condition

β1n1+ + β2n+1 ≥ n11 − (α − (β1 + β2)) (n1+ ∧n+1) (3.24)

and under (3.23) to the condition

β1n1+ + β2n+1 ≤ n11 − (α − (β1 + β2)) (n1+ ∨n+1) (3.25)

where n1+ ∨ n+1 equals the maximum of n1+ and n+1 and n1+ ∧ n+1 the minimum of
n1+ and n+1.

Summarizing, we need either

β1 + β2 < α
β1n1+ + β2n+1 ≤ n11
β1n1+ + β2n+1 ≥ n11 − (α − (β1 + β2)) (n1+ ∧n+1)

 (3.26)

or

β1 + β2 > α
β1n1+ + β2n+1 ≥ n11
β1n1+ + β2n+1 ≤ n11 − (α − (β1 + β2)) (n1+ ∨n+1)

 (3.27)
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Assuming R1 to be the largest data set, i.e., n1+ > n+1, the set of conditions (3.26) is
equivalent to

β1 ≥ (n11 −αn+1)
/

(n1+ −n+1)
β1 + β2 < α
β1n1+ + β2n+1 ≤ n11

 (3.26′)

and the set of conditions (3.27) to

β2 ≥ (αn1+ −n11)
/

(n1+ −n+1)
β1 + β2 > α
β1n1+ + β2n+1 ≥ n11

 (3.27′)

Assuming the two data sets to be of equal size, i.e., n1+ = n+1, the set of conditions
(3.26) is equivalent to

α ≥ n11

/
n1+

β1 + β2 < α
β1n1+ + β2n+1 ≤ n11

 (3.26′′)

and the set of conditions (3.27) to

α ≤ n11

/
n1+

β1 + β2 > α
β1n1+ + β2n+1 ≥ n11

 (3.27′′)

3.6.3 Enforcing one-to-one linkage

In our asymmetric two-way correction method, we have three parameters; α, β1 and
β2. In case we enforce one-to-one linkage, we can actually do with two, because in
that situation we can write β1 as a function of α and β2.

In Figure 3.3 the relation between (expected) counts based on the population and
based on linkage are shown in the situation where we potentially would like to apply
the asymmetric two-way correction with enforced one-to-one linkage. Under the as-
sumption of one-to-one linkage, it should hold that β1N10 = β2N01, as can be seen in
the figure. Noting that E[N10] = p1(1−p2)NX and E[N01] = p2(1−p1)NX and plugging
in the estimators p̂1 and p̂2 from (3.17), we can derive the following relation

β1 =
(αn+1 −n11)β2

(αn1+ −n11)− 2β2(n1+ −n+1)
(3.28)

Note that, assuming equal sizes of the two registers, i.e., n1+ = n+1, equation (3.28)
yields β1 = β2. That is, we would obtain the situation in which the symmetric two-
way correction is applicable.
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Figure 3.3: Relations between counts based on population and based on one-to-one linkage
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Moreover, from (3.28) it follows that

α > 2β2 and n1+ > n+1 =⇒ β1 < β2

α > 2β2 and n1+ < n+1 =⇒ β1 > β2

as expected (see discussion in Section 3.1).

3.6.4 Estimation of the matching probabilities using logistic regres-
sion

For a sample of records from the smallest register it is assumed that the true match
status can be determined, i.e., we assume that it is known whether or not the record
should be linked to a record from the larger register and if so with which record it
should be linked. Therefore, for a subset of all pairs generated in the linkage process,
the true match status is known. The goal of the logistic regression model is to predict
the probability that this pair is a true match, based on properties of the record pair.

In the regression model the following covariates are used

1. The result of the comparison of the linkage variables. In this case the linkage
variables are the three elements of the date of birth; day (DB_D), month (DB_M)
and year (DB_Y). These variables are binary; both records of the pair agree on
the variables (true) or not (false). If in at least one of the records a variable is
missing, we consider it a disagreement (false).
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2. Whether or not the pair is selected when enforcing one-to-one linkage (LNK).
This is also a binary variable which is false when there is a more likely match for
one or both of the records. This variable is a strong predictor for true matches.

The target variable is the true match status (a binary variable). All variables are added
as main effects. No interactions are used in the model. The model is estimated using
the sampled pairs and then used to calculate predictions of the matching probability
for all pairs.

To estimate m11 the probability that a pair is a true match given that a pair has been
linked is needed, and to estimate N11 the probability of a true match given that a pair
has been linked or has not been linked is needed. Therefore, as long as the sample is
representative for the set of pairs, using only LNK should be enough to obtain unbiased
estimates of N11 and m11 (n11 follows directly from the linkage procedure). Adding
additional variables to the regression model, such as DB_D, DB_M and DB_Y in this case,
could lead to a reduction of the variance of the estimators when the probability of a
false link depends on this variable. However, as this is strongly data set dependent
and as the main goal of the correction method is the removal of the bias, additional
covariate candidates were not investigated.
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Chapter 4

A General Framework for
Multiple-Recapture Estimation that

Incorporates Linkage Error
Correction

The size of a partly observed population is often estimated with the capture-
recapture model. An important assumption of this model is that sources can be
perfectly linked. This assumption is of relevance if the identification of records is
not obtained by some perfect identifier (such as an id code) but by indirect iden-
tifiers (such as name and address). In that case, the perfect linkage assumption is
often violated, which in general leads to biased population size estimates. Initial
suggestions to solve this use record linkage probabilities to correct the capture-
recapture model. In this article we provide a general framework, based on the
standard log-linear modelling approach, that generalises this work towards the
inclusion of additional sources and covariates. We show that the method per-
forms well in a simulation study.

This chapter is published in the Journal of Official Statistics: Zult, D.B. (DZ), de Wolf, P-P. (PPdW),
Bakker, B.F.M. (BB) and van der Heijden, P.G.M. (PvdH), 2021. A General Framework for Multiple-
Recapture Estimation that Incorporates Linkage Error Correction. Journal of Official Statistics, Vol.
37, No. 3, 2021, pp. 699–718 https://doi.org/10.2478/jos-2021-0031. Author contributions: BB
proposed the problem, DZ and PPdW discussed the problem and worked out the idea. DZ did the
analyses and wrote most of the text and BB and PvdH discussed and edited the text.
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4. A General Framework for Multiple-Recapture Estimation that Incorporates
Linkage Error Correction

4.1 Introduction

Capture – recapture (CR) estimation provides a standard approach to estimate the
size of a population, including the unobserved part (Petersen, 1896; Fienberg, 1972;
Bishop et al., 1975). These models are also known under other names, such as dual
- system, multiple system and mark – recapture estimation models (see e.g. Interna-
tional Working Group for Disease Monitoring and Forecasting, 1995a). Dual-system
(DS) estimation uses two sources and multiple system (MS) estimation uses three or
more sources (see e.g. Fienberg, 1972). A source refers to a set, list or register of
records. We assume that each record represents a unit that is unique to that source
and belongs to the target population. When the combination of available sources does
not cover the full target population, under specific assumptions as described in Wolter
(1986), CR models can be used to estimate the size of the missing part of the popula-
tion. One of the assumptions in CR models is that records can be perfectly identified
over sources as belonging to the same unit or not. This allows an accurate linkage
of records and sources into one combined source. If a perfect identification of units
is not possible there is a non - zero probability that records will be falsely linked (a
mismatch), or falsely not linked (a missed match) and the resulting population size
estimate (PSE) is generally biased (see e.g. Wolter, 1986; Chao, 2001; Z. Chen & Kuo,
2001; Cadwell et al., 2005; Bakker et al., 2017). A first step of a solution to this prob-
lem was provided by Ding and Fienberg (1994, D&F). For the linkage of two sources
S1 and S2 they define five different linkage error types:

(1) A missed link between the same unit that is in both S1 and S2.

(2a) A false link between two different units that are both in S1 and S2.

(2b) A false link between a unit that is in S1 and S2 and a different unit that is only
in S2.

(2c) A false link between a unit that is in S1 and S2 and a different unit that is only
in S1, and

(2d) A false link between two different units that are in S1 and S2.

Linkage error type (1) concerns a missed match while type (2a) – (2d) concern differ-
ent types of mismatches. To simplify the model, D&F assume that linkage error types
(2a) – (2c) are negligible because they require a double linkage error. Therefore, they
derive a model that corrects for the two remaining linkage error types (1) and (2d).
The D&F model requires a rematch study. This is a study that checks whether a subset
of record linkages and non – linkages is correct or not and is usually carried out by
a clerical review. This subset is assumed to be representative for the entire popula-
tion. The D&F model uses the rematch study to obtain different sorts of linkage error
probabilities. Note that linkage errors refer to record linkage errors that occur during
source linkage. A record linkage is the linkage between two records in two sources.
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Source linkage refers to the linkage of records in two or more sources. The D&F model
is extended by Di Consiglio and Tuoto (2015, DC&T 15) and Di Consiglio and Tuoto
(2018, DC&T 18). They showed that D&F only explicitly consider the probability of
a record in S1 to be falsely linked to a record in S2, while a record in S2 can just
as well be falsely linked to a record in S1. Therefore, DC&T 15 derive a model that
takes both options into account. Further progress is presented by de Wolf et al. (2019,
WLZ), who showed that both D&F and DC&T 15 implicitly assume that S1 and S2

are of equal size. This is important, because the probability of a false link increases or
decreases when the number of potential record linkages increases or decreases, which
depends on the size of both sources. Therefore, WLZ derive a model that takes these
different source sizes into account. This progress in DC&T 15 and WLZ is restricted
to linkage error type (1) and (2d). WLZ take one more step and derive a (what we refer
to as D&F+) model that takes all five linkage error types into account. We will see in
Section 4.3 that this D&F+ model is also less complex and can be used to generalize
the model even further. Despite the progress the D&F+ model still suffers from two
major shortcomings:

(1) It is unclear how to perform statistical inference with respect to covariates in the
model.

(2) The D&F+ model is only defined for two sources and not for three or more.

These two shortcomings are important in case captures are covariate and/or source
dependent, because it implies that linkage error correction is not possible, if covariates
and/or additional sources are also required to correct for covariate and/or source de-
pendencies. The linkage errors also cannot be modelled explicitly in case of recapture-
prone or recapture-adverse populations (see e.g. Chatterjee & Mukherjee, 2018). If
there are two sources these linkage error probabilities might still be incorporated in
the derivation of a closed form maximum likelihood estimator when the sources are
independent. However, this derivation becomes increasingly complicated when co-
variates and additional sources are added, and it is unclear how to do statistical infer-
ence in this situation. In this paper we propose to use the rematch study in a different
way than the existing linkage error correction models. Where these existing models
first estimate linkage error probabilities and use these probabilities to correct the DS
estimate, we directly correct the cell counts in the contingency table for linkage er-
rors. In this way linkage error correction is integrated in the general framework of
CR estimation. A cell count represents the size of a group in the combined source,
where a group is defined by its source(s). This linkage error corrected contingency
table may include multiple sources and covariates and underlies the CR model. Us-
ing the log-linear Poisson regression model, statistical inference on this table can be
accomplished in the same way as in this model without linkage errors. In this way we
derive a CR estimation procedure that corrects for linkage errors but can deal with
any number of linked sources and covariates. In Section 4.2 we introduce some nota-
tion and discuss the general problem of linkage errors in CR models. In section 4.3 we
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first discuss CR models in general and corresponding linkage error correction meth-
ods known in the literature. In the same section we combine these to derive a general
CR model framework that corrects for linkage errors and can deal with covariates and
multiple sources. We refer to this model as the weighted multiple - recapture (WMR)
model. The expression weighted comes from the individual record weights that we
will introduce in Section 4.4. Section 4.5 presents a simulation study that shows that
the model works, and section 4.6 concludes and discusses the results.

4.2 Notation and an illustration of linkage errors

In this section we introduce the notation that we use to describe our model. Because
our model involves linkage errors, we first discuss source linkage. Imagine there is
some linkage procedure ℓ that links a set of sources with linkage keys. A linkage key
can either be a perfect identifier γ , like a flawless ID – number, or some set of Z im-
perfect identifiers γ̃ = γ̃1, . . . , γ̃Z , such as non – unique names or names that are not
spelled flawlessly. In case γ is available, linkage can be performed without linkage
errors and in case γ̃ is available, source linkage might contain errors. In case more
than two sources are available sources can be linked either simultaneously, pairwise,
or sequentially. Simultaneously means that all sources are linked in one step. Pairwise
means that different sets of sources are linked first after which these linked sources
are linked again until all sources are linked into one linked source. Sequential linkage
means that first two sources are linked, then the next is linked to this source, and so
on, until no sources remain. Each step of sequential linkage could be considered a
special version of pairwise linkage. In case γ is available, there is no difference be-
tween simultaneous, pairwise, and sequential linkage, they lead to the same result.
However, in case only γ̃ is available this equality does not necessarily hold. For in-
stance, in case of pairwise linkage, records might be linked inconsistently (e.g. A→ B,
B→ C, C ↛ A). This inconsistency is not possible in simultaneous or sequential link-
age. However, simultaneous linkage has the problem that it can become computation-
ally very intensive, because the number of potential matches increases exponentially
with every source. Therefore, as was also argued by DC&T 18, sequential linkage is
usually preferred in practice. Therefore, we assume source linkage by ℓ is performed
sequentially.

4.2.1 Linkage with perfect identifiers

We first discuss the situation for perfect identifiers. Let there be K sources Sk (k =
1, . . . ,K). Each source Sk contains sk records that represent a set of population units.
We assume that the units in each source are a subset of units from the population that
has unknown size m. We assume that each source contains a perfect matching key γ
that can be used in the (sequential) linkage procedure ℓ. ℓ starts with linking S1 and
S2 and so on until Sk is linked, which implies a total of K−1 linkages. After each step,
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the resulting linked source is referred to as N k after each step. This can be written as:

N k =


N 1 = S1

N 2 = ℓ
(
N 1,S2 | γ

)
· · ·
NK = ℓ

(
NK−1,SK | γ

) (4.1)

where N k consists of nk records with nk < m.

4.2.2 Linkage without perfect identifiers

When instead of a perfect, an imperfect linkage key γ̃ is available, linkage errors
can occur. The number of linkage errors may be reduced with probabilistic linkage
models (see e.g. Fellegi & Sunter, 1969; Winkler, 1988; Jaro, 1989). Probabilistic
linkage models generally use imperfect linkage keys to minimise both the probability
of mismatches and missed matches and find the optimal balance between these two.
They estimate, for each possible pair of records, a probability of this pair being a
match. For example, when two records have almost the same and unique name, the
probabilistic linkage model estimates this pair to have a high probability of being
a match and links them. The concepts behind these estimated probabilities will be
discussed in more detail in Section 4.3, because they are at the base of the D&F model
and its successors. We defined N k as the combined source that is obtained in case a
perfect linkage key γ is available. With the imperfect linkage key γ̃ , N k is replaced
by Ñ k and can be written as:

Ñ k =


Ñ 1 = S1

Ñ 2 = ℓ(Ñ 1,S2 | γ̃1)
· · ·
ÑK = ℓ(ÑK−1,SK | γ̃K )

(4.2)

where γ̃k refers to the set of imperfect linkage key variables that is available in linkage
k and Ñ k has ñk records and may contain mis- and/or missed matches. While with
perfect linkage it is certain that the number of records nk is a lower bound for the
population size m, this does not hold for ñk. Due to imperfect linkage, ñk can be
smaller, equal to or larger than m, but also smaller, equal to or larger than nk, because
a missed match increases the number of records and a mismatch decreases the number
of records in Ñ k.

4.2.3 Records and cell counts

N k and Ñ k are combined sources with nk and ñk records, where due to linkage errors
a record may represent multiple individuals. A single record r is referred to as N k

r
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and Ñ k
r with r = 1, . . . ,nk and r = 1, . . . , ñk respectively. Each of these records contains

a string in the subscript of K binary indicators that correspond to the sources S1 . . .Sk

and indicate in which source a record occurs. A frequency then becomes N k
S1...Sk ,

where e.g. N k=2
S1S2 = N k=2

11 means the subset of records r that are in both S1 and S2.
Each subset N k

S1...Sk has a corresponding cell count denoted as nS1...Sk , which is simply

the number of records in subset N k
S1...Sk . These binary indicators are a fundamental

part of CR models because they define the cell count categories in the contingency
table and serve as explanatory variables. Corresponding with the combined sources
N k and Ñ k we define Ak and Ãk as a matrix with in each row a unique capture his-
tory that corresponds to a sum of the observed cell counts nk

S1...Sk for perfect linkage

and ñk
S1...Sk for imperfect linkage. For example, under perfect linkage the unique set

of capture histories for three sources is collected in A3 =



1 1 1
1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1


where each row

corresponds to an observed count nS1S2S3 , where the subscripts S1, S2 and S3 refer to
a row in A3. For instance, n111 is the count that belongs to the first row in A3. The ob-
served cell counts nS1S2S3 can be considered realisations of a random process, so they
also have an expectation that we refer to as mS1S2S3 . For mS1S2S3 we have the equality∑

S1S2S3 mS1S2S3 + m000 = m, where m000 is the expected number of units in the pop-
ulation missed by S1, S2 and S3. Estimates of mS1S2S3 , m000 and m based on counts
resulting from linkage with perfect identifiers nS1S2S3 , are denoted with a hat, for ex-
ample m̂S1S2S3 , while estimates that are based on counts resulting from linkage with
imperfect identifiers ñS1S2S3 , are denoted with a reversed hat, for example m̌S1S2S3 .

Finally we note that the definition of Ak above allows for a straightforward exten-
sion when categorical covariates are to be included in the process, by adding dummy
variables as columns and adding rows such that S1 . . .Sk are represented separately
for the distinct levels of the covariates. Interactions between the sources, and between
sources and covariates, can be included by adding columns appropriately.

4.2.4 An illustration of source linkage, linkage errors and the con-
tingency table

Figure 4.1 illustrates the simple case of the linkage of k = 2 sources with the imperfect
linkage key γ̃1 and the five linkage errors types (1 – 2d) discussed in section 4.1.
The illustration in Figure 4.1 presents two imperfectly linked sources of equal size
s1 = s2 = 7. The total number of units in S1 or S2 is nine, and the units are labelled
A to I. The solid line arrow represents a correct record linkage while the dashed line
arrows represent five other linkages that all correspond to one of the linkage error
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Figure 4.1: Illustration of linkage of two sources and different types of linkage errors.

types (1 – 2d). The resulting combined source Ñ k=2 contains the nine records Ñ k=2
r

(r = 1, . . . ,9) and each record belongs to one of the subsets Ñ 2
S1S2 . Under perfect linkage

each record in N k=2 should correspond to one unique unit in S1 and S2. This does not
hold in case of linkage errors. In fact, in this artificial example the only correct match
is [D, D] while all other records represent missed or mismatches. Despite the linkage
errors, in this case it (coincidentally) does not lead to errors in the cell counts. The
reason is that in this artificial example the five different linkage error types cancel each
other out. Obviously, ignoring linkage errors generally lead to a difference between
nS1S2S3 and ñS1S2S3 . The question we deal with in section 4.4.3 is how we can correct
ñS1S2S3 in such a way that this correction is an unbiased estimate of nS1S2S3 . But to see
why this is useful we first discuss CR models in Section 4.3.

4.3 Linkage error correction in capture - recapture esti-
mation

In this section we describe and discuss DS models and the linkage error correction
method introduced by D&F. We first describe the most basic DS model which was
introduced by Petersen (1896) and is also known as the Lincoln - Petersen model
(Lincoln, 1930). Next, we show how D&F improve this model so that it corrects
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for linkage errors. We further discuss DC&T 15, DC&T 18 and WLZ, because they
provide the tools that help us to show why correction of the contingency table also
corrects for linkage errors.

4.3.1 Relation between the basic dual – system and the log – linear
Poisson regression model

In the DS model A2 has three rows, with associated expected cell counts. The maxi-
mum likelihood (ML) estimates (m̂11, m̂10, m̂01) are equal to (n11,n10,n01) because the
DS model is saturated. Under the appropriate assumptions (Wolter, 1986), including
perfect linkage, the basic DS estimate can be obtained by:

m̂DS = m̂11 + m̂10 + m̂01 + m̂00 = n11 +n10 +n01 +n10n01/n11 = s1s2/n11 (4.3)

where m̂00 represents an estimate of the unobserved part of the population and m̂DS is
the estimate for the population size. The expression s1s2/n11 simply follows from s1 =
n11+n10 and s2 = n11+n01. This expression will become important, because it contains
only one value (n11) that can be affected by linkage errors because s1 and s2 are simply
the size of S1 and S2, which are unaffected by linkage errors. The population size can
also be estimated using the log-linear Poisson model (see e.g. Cormack, 1989). The
log – linear Poisson regression model for A2 can be written as:

mS1S2 = e(β0+β1,S1+β2,S2), (4.4)

with β1,S1
,β2,S2

= 0 if S1,S2 in the subscript is zero and a parameter to be estimated
otherwise. Using the estimate of the intercept an estimate m̂00 can be obtained as
m̂00 = eβ̂0 . Because the ML estimate β̂0 in Eq. (4.3) is β̂0 = log(n10) + log(n01)− log(n11),
the equality eβ̂0 = n10n01/n11 also holds. This equality shows why Eq. (4.3) and (4.4)
lead to the same result. However, an important advantage of the log – linear formula-
tion is that it can be easily extended with additional sources or categorical covariates
and the interaction between them. For instance, with a third source and a categorical
covariate X with levels 1 and 0, then mS1S2 becomes mS1S2S3X and the model might
for instance be:

mS1S2S3X = e(β0+β1,S1+β2,S1+β3,S1+β4,S1S2+β5,S1S3+β6,X).

Extending the Petersen formula in this way would be non - trivial at best, while for
each category in X a PSE of the unobserved population can be obtained by m̂0000 = eβ̂0

and m̂0001 = eβ̂0+β̂6,X=1 .

4.3.2 Impact of linkage errors on the dual - system model

We provide a simple numerical example that illustrates the problem of linkage errors
in the DS model. We take s1 = 300, s2 = 150 and n11 = 100. Due to linkage errors

70



4.4. The D&F and D&F+ model

ñ11 = 90. The difference between n11 and ñ11 implies that the number of missed links
is 10 more than the number of false links. This simple case is represented in Table 4.1
below.

An estimate for m00, m̂00 = n10n01/n11 = (200 × 50)/100 = 100. However, due to
linkage errors not nS1S2

, but ñS1S2
is observed and when this is naively ignored the DS

estimate becomes: m̌00 = ñ10ñ01/ñ11 = (210 × 60)/90 = 140, leading to a linkage error
bias of 40, something better not left ignored. Note that the “∨” on m̌00 only means that
m̌00 is an estimate based on cell counts that are subject to linkage errors, not whether
the estimate is biased or not.

4.4 The D&F and D&F+ model

The D&F model is a DS model that aims to correct the population size estimate for
linkage errors type (1) and (2d) (compare Section 4.1). We refer to the population size
estimate resulting from this model as m̂D&F. To estimate the linkage error probabilities
of these two error types, they use a rematch study. A rematch study aims to confirm
whether a subset of matches and non – matches were correct or not. The rematch
study can be summarized as in Table 4.2.

Table 4.1: Example
of true and observed
cell counts table of two
sources.

A2 nS1S2 nS1S2

1 1 100 90
1 0 200 210
0 1 50 60

Table 4.2: Rematch study with D&F structure.

Rematch study
Matched Not matched

Probabilistic Matched a11 a10
Linkage Not matched a01 a00

In Table 4.2 we see how many records in the rematch study were correctly matched
(a11), correctly not matched (a00), incorrectly matched (a10) and incorrectly not
matched (a01). They define the probability of linkage error type (1) by α and of type
(2d) by θ. Thus, α = a11/(a11 + a01) and θ = a10/(a10 + a00) and D&F show how to
use these probabilities to obtain m̌D&F that corrects for linkage errors (1) and (2d).
The D&F model recently received more attention from DC&T 15 and WLZ. DC&T 15
write m̌D&F as:

m̌D&F = (ñ11 + ñ10 + ñ01)/(p̂1 + p̂2 − (α −θ)p̂1p̂2 −θp̂1), (4.5)

with p̂1 = (−N11 + θ(ñ11 + ñ10))/(θ − α)(ñ11 + ñ01), and p̂2 = (−ñ11 + θ(ñ11 + ñ10))/(θ −
α)(ñ11 + ñ10). These equations show that the D&F model is complex and hard to in-
terpret. The formulas become even more complex when DC&T 15 introduce their so
called two - way linkage errors. This model is further extended by WLZ, who show
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that in the calculation of the two - way linkage errors it is implicitly assumed that
the sizes of source 1 and 2, s1 and s2, are equal. Therefore, they extend the model
with asymmetrical two – way errors, which allows the value of s1 and s2 to differ from
each other. Unfortunately, this implies introducing more notational complexity (as θ
is separated into θ1 and θ2). In DC&T 18 the linkage error correction model is ex-
tended from two to three sources. DC&T 18 introduce a so – called transition matrix
that allows one to transform the observed cell counts into estimates of the true cell
counts, which can serve as input for the Poisson regression model. This is a useful
extension on their earlier model, but it is still limited in the sense that the method is
not generic with respect to covariates and it is unclear how to add yet an additional
source.

Beside WLZ’s asymmetrical two – way errors extension, they provide us with an-
other useful contribution. They show that the D&F model, the DC&T 15 model and
their own extension all give identical outcomes when not only the formula of m̂D&F
but also of α and θ are chosen appropriately. They also show that in this case the
model corrects for all five linkage error types introduced in Section 4.1. We refer to
this model as the D&F+ model. WLZ also show that this can be written much more
comprehensively as:

m̌D&F+ = s1s2/ň11, (4.6)

where ň11 is an estimate for m11 based on ñ11 and the rematch study, instead of the
directly observed n11 used in the DS model. Eq. (4.6) shows that the models derived
in D&F, DC&T 15 and WLZ are all equal and a generalisation of the DS-estimator. In
the next section we will show that ň11 can be derived in a straightforward way when
the rematch study is used in a slightly different way. Unlike in WLZ it will no longer
depend on α and θ altogether.

4.4.1 Further simplification of the D&F+ model

The D&F+ model as defined in Eq. (4.6) contains only one element that is susceptible
to linkage errors, i.e. ň11. WLZ derive ň11 starting with the a’s in table 4.2. These
are used to estimate α and θ that in turn are used to estimate ň11. In this section
we propose to simplify this procedure by using the rematch study differently. To
describe this procedure, we first define Ň k, which is similar to N k and Ñ k as defined
in Eq. (4.1) and (4.2) respectively, but with the difference that Ň k is also based on
the rematch study in a way that we describe below. The rematch study concerns a
representative subsample of the population of which the matches and non-matches
were clerically reviewed. This means that for the records in this rematch study subset
it is quite simple to count the number of matches before and after clerical review. We
refer to the set of records that are subject to clerical review with a “∗”. This implies
Ñ k∗ and Ň k∗ are the sets of linked records between Ñ k−1 and Sk, that were under
clerical review, before and after clerical review. The overlap count of the records in
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the clerical review study before and after clerical review are denoted as ñk
∗

11 and ňk
∗

11.
Then the ratio ňk

∗
11/ñ

k∗
11 can be used to estimate ň11 with:

ň11 = ñ11ň
k∗
11/ñ

k∗
11, (4.7a)

For k = 2 the elements ň10 and ň01 can be obtained by:
ň10 = s1 − ň11, (4.7b)

ň01 = s2 − ň11, (4.7c)

Note that we write ňk
∗

11 instead of nk
∗

11, although for k = 2 they are equal. As we
will see later, for k > 2 this equality no longer holds, because then nk

∗
11 is no longer

a simple count but a sum of weights unequal to 1. Equations (4.7) serve as input

for the saturated model as defined in (4.3), i.e. ňS1S2 = e(β̌0+β̌1,S1+β̌2,S2 ), which gives
m̌00 = eβ̌0 . This implies that by combining (4.3) with (4.7) in the basic DS model we
have obtained the PSE m̌D&F+, with a simple set of formulas. In the next section we
show how these formulas can be extended such that they can deal with covariates and
additional sources.

4.4.2 Covariates in the D&F+ model

We proceed by a further development of DS model in the context of the log – linear
Poisson regression model with categorical covariates. When there is only one categor-
ical covariate X with X ∈ (0,1), then n110 is the number of records in S1 and S2 with
X = 0. Note that while without covariates we had n10 = S1 − n11, with covariates this
can be replaced by n10X = s1

X −n11X where s1
X refers to the number of records in S1 for

each level in X. This gives us a straightforward way to incorporate covariates in the
D&F+ model, because we can simply replace the subscript S1S2 in equation (4.7) with
the subscript S1S2X, which gives:

ň11X = ñ11X ň
k∗
11X/ñ

k∗
11X , (4.8a)

ň10X = s1
X − ň11X , (4.8b)

ň01X = s2
X − ň11X . (4.8c)

Equations (4.8) yield (ň11X , ň10X , ň01X) that can be used as values of the dependent
variable in the log – linear Poisson regression model that includes the covariate X as
explanatory variable. This can be extended in a straightforward way for more ex-
planatory variables, as was described in Section 4.3.1. This approach has the advan-
tage that it allows for parsimonious models. For example, it may turn out that some
parameters that estimate the effect of covariates do not depart significantly from zero
and the model can therefore further ignore this covariate. This option of hypothesis
testing is an important improvement over the D&F+ model. Working with a satu-
rated model will induce redundant noise in the DS model, when a more parsimonious
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model fits adequately. Therefore, significance testing of covariates is important, and
becomes increasingly so when the number of covariates in the CR model increases.
Without discussing technical details, we elaborate on the role of X. It is important
to include X in the CR model when the capture probabilities are heterogeneous over
S1 and S2, and X takes this into account. However, it is not necessarily the case that
the levels of X differ with respect to linkage error probabilities as well. For instance,
records with X = 1 might be more likely to be in S1, however, they are not necessar-
ily also more likely to be falsely linked or not linked to S2. In this case, despite the
significance of X in the CR model, the ratios nk

∗

S1S2X=1/ñ
k∗

S1S2X=1 and nk
∗

S1S2X=1/ñ
k∗

S1S2X=0
should in most cases not differ significantly and X can be ignored in the linkage error
correction step. The cell counts of records with X = 1 and X = 0 can both be corrected
with the same ratio nk

∗

S1S2/ñ
k∗

S1S2 . Therefore, in practice one may first test whether the
ratios nk

∗
11X/ñ

k∗
11X differ significantly from each other for different levels within X.

4.4.3 Additional sources in the D&F+ model:
The weighted multiple-recapture model

Eq. (4.7) can be applied on the contingency table of the combined source Ñ k=2 (this
also holds for (4.8), but we further ignore this to keep the presentation simple). When
a third source is involved, it must be linked to Ñ k=2 again. However, Ñ k=2 was not
affected by (4.7), so simply linking S3 to Ñ k=2 would ignore the linkage error correc-
tion in (4.7). Therefore, before the next source is linked, the information obtained in
this linkage error correction step should somehow be transferred to Ñ k. A straight-
forward way to do this is by introducing record level weights, which is achieved by
disaggregating ňS1S2 to the record level by distributing ňS1S2 evenly over the corre-
sponding records. For example for k = 2, each record Ñ k=2

r in Ñ k=2 receives a weight
wk=2
r = ňS1S2/ñS1S2 for r ∈ Ñ k=2

S1S2
. We refer to the combination of Ñ k=2 and the cor-

responding vector of linkage error correction weights wk=2 as Ň k=2. Ň k=2 may now
be linked to S3, giving Ñ k=3, which may introduce new linkage errors. Ñ k=3 can be
used to obtain m̂Ň k=2S3 by summing up over wk=2

r for the records in Ň k=2 while (new)
records in S3 receive a weight wk=2

r = 1. This gives cell counts that are corrected for
linkage errors in going from S1 to S2 but not yet in going from Ň k=2 to S3. To correct
for these new linkage errors the linkage error correction step in (4.7) can be repeated
to transform m̂Ň k=2S3 into m̌Ň k=2S3 . In case more sources are linked, this linkage error
correction procedure can be repeated after each new source. This procedure of link-
ing two sources, aggregating this combined source to a contingency table, correcting
the cell counts for linkage errors, disaggregation the contingency table back to the
combined source and again linking a new source, is quite cumbersome. This proce-
dure becomes more straightforward when the linkage error correction step in (4.7) is
performed directly on the record level weights wk

r . Then, only after the last source is
linked, a contingency table that is corrected for linkage errors is produced by sum-
ming up over the weights for the corresponding categories. This can be written more
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formally by an updating scheme for wk
r with wk=1

r = 1:

wk
r =



wk−1
r ňk

∗
11/ñ

k∗
11 for r ∈ Ñ k

11

wk−1
r ňk

∗
10/ñ

k∗
10 =

(
ň(k−1)∗ − ňk∗11

)
/
(
ň(k−1)∗ − ñk∗11

)
for r ∈ Ñ k

10

1 ňk
∗

01/ñ
k∗
01 =

(
sk
∗ − ňk∗11

)
/
(
sk
∗ − ñk∗11

)
for r ∈ Ñ k

01.

(4.9)

Where sk
∗

=
∑

r∈(Ň k∗
11 ,Ň

k∗
01)w

k−1
r , ň(k−1)∗ =

∑
r∈(Ň k∗

11 ,Ň
k∗
10)w

k−1
r , ňk

∗
11 =

∑
r∈Ň k∗

11
wk−1
r and ñk

∗
11 =∑

(r∈Ñ k∗
11)w

k−1
r . Note that records with r ∈ Ñ k

01 are always new records that were not
linked in the k−1 previous linkage steps. Therefore, their (individual starting) weight
is simply (still) equal to 1, because they were not updated in any of the previous updat-
ing steps. Further note that in case there is reason to believe some covariate groups
may be more susceptible to linkage errors than others, Eq. (4.9) may be applied for
these groups separately. Generally, the record level linkage error correction weight wk

r
is a weight that can be interpreted in a similar way as well-known individual sample
weights in survey models. In survey models, individual sample weights allow a re-
searcher to correct for over- and underrepresentation of specific groups in a survey.
A record with a higher than average weight belongs to a group that is underrepre-
sented and vice versa for a record with a low weight. Similarly, a record with a higher
or lower than average linkage error correction weight belongs to a group with a cell
count that is under- or overestimated, respectively. With individual sample weights,
it is quite common to sum up over these weights to obtain representative totals. For
instance, when the number of men is underrepresented, summing up over their sam-
ple weights gives the number of men that is corrected for this underrepresentation.
The same reasoning holds for the record level linkage error correction weights. By
applying Eq. (4.9) after each source linkage, a contingency table that is corrected for
linkage errors can be constructed after every source linkage. This contingency table is
different from a regular contingency table that simply counts the number of records
in each linkage cell. The linkage error corrected contingency table is constructed by
summing up the weights of these records over these linkage cells instead of count-
ing records. Therefore, we refer to the models based on this contingency table as the
weighted dual – system (WDS) model for two sources and the weighted multiple – re-
capture (WMR) model for more than two sources. In case there are no linkage errors,
the models reduce to the standard DS and MR models.

4.5 Simulation study

We evaluate the WMR model with a simulation study. The main goal of this simula-
tion study is to study whether our new WDS and WMR model behave under different
conditions, such as (no) linkage errors, (no) covariate dependence, (no) source de-
pendence and combinations thereof. In Section 4.5.1 we describe the setup of this
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simulation study and in section 4.5.2 we discuss the results.

4.5.1 Simulation study setup

For the simulation study to reflect reality as well as possible we use a quasi - real
dataset that is publicly available and represents a fictitious population dataset of
26,625 persons. It is constructed such that it is representative for the UK census pop-
ulation. It was created in the ESSnet DI (McLeod et al., 2011), a European project on
data integration (Record Linkage, Statistical Linking, Micro integration Processing)
that ran from 2009 to 2011. The dataset has linkage keys such as address and birth-
date but also covariates such as gender and age. In each replication of the simulation
study a random population of 10,000 is generated. This size of 10,000 is chosen be-
cause the Poisson regression estimators have known finite sample bias (see e.g. Chap-
man, 1951; Menkens & Anderson, 1988; Q. Chen & Giles, 2011). This bias goes to
zero when the sample increases to infinity. For, say, a population size of 1,000 this
bias may still play a role, so then it will be hard to say whether a CR model corrects
for linkage error bias. A probable example of this finite sample bias can be found in
DC&T 18 who present a simulation study with similar data and setup but with a true
population size (TPS) of 1,000. In this study, the mean of the PSEs that were unaf-
fected by linkage errors deviates slightly but statistically significantly (i.e. by 1.05%)
from the TPS. This small bias is like the finite sample bias that we encountered when
we experimented with a TPS of 1,000. Unfortunately, the population size can also not
be too large because probabilistic record linkage is computationally very intensive.
A population size of 10,000 is a balanced choice that leaves the finite sample bias
practically ignorable and leaves the probabilistic linkage procedure computationally
feasible. This population of 10,000 serves to generate three sources that each cover
part of the population. These sources are generated under different conditions where
conditions vary with respect to covariate and source dependence. This leads to four
scenarios:

1. Three randomly generated sources (no dependencies).

2. Three sources in which covariates affect the probability of a record to be in a
source (covariate dependence).

3. Three sources where the probability of a record to be in a source is affected by
this record being in other sources (source dependence).

4. Three sources where records are subject to both covariate and source depen-
dence.
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Next, in each replication the sources are linked both with and without linkage er-
rors. The linked sources allow us to apply both the regular (referred to as naı̈ve) and
weighted DS (using only the first two sources) and MR (using all three sources) model.
By replicating this procedure many times (i.e. 1,0501 for each scenario) we can obtain
a distribution of estimates that in case the model provides asymptotically unbiased
estimates will evolve around the TPS of 10,000. In this way we can see whether the
WDS and WMR model can deal with covariate and source dependencies while suffer-
ing from linkage errors, conditions under which the regular DS and MR model fail. A
more detailed description of the simulation setup can be found in Appendix 4.7.2.

4.5.2 Simulation results

In Figure 4.2 below the simulation results of the four scenarios are presented as den-
sity plots. Figure 4.2 contains twelve density plots that each contain distributions/-
densities of DS and MR estimates. In the rows there are the four scenarios, and the
first two columns distinguish naı̈ve estimation with and without linkage errors. The
third column shows the WDS and WMR model in case of linkage errors. The graph
clearly shows that the estimates that can be expected to be biased, are biased. How-
ever, most importantly, it shows that in case of linkage errors the weighted estimates
are on target while naı̈ve estimates are biased. Furthermore, the presence of covari-
ate dependence is no problem for the weighted estimates, even in combination with
source dependence. A numerical calculation example of one of the replications can be
found in Appendix 4.7.1.

4.6 Discussion

In this paper we derived and tested the WMR model for population size estimation
corrected for linkage error. The model is derived from the D&F model and is a more
general extension than the models developed by Di Consiglio and Tuoto (2015, 2018)
and de Wolf et al. (2019) because it includes three or more sources and covariates,
which are often necessary to correct for other sources of bias. The linkage error cor-
rection model we developed is incorporated in the more general family of log - linear
regression models. Thus, linkage error no longer has to be studied as an isolated is-
sue in CR models. Finally, the WMR model was tested and approved in a simulation
study. In practise the WMR model does not solve all the linkage error problems. For
instance, it still requires a rematch study in which for a share of records clerical re-
view is required to check whether they were correctly linked or not linked. Ideally
these records are representative for the records in both sources, both with respect to

1The number is ‘only’ 1,050 because we use a Spark cluster of fifteen cores (available at Statistics
Netherlands mainly for Big Data related computations) that each do 70 replications with different
random seeds, in which each single replication takes about 10 minutes. In total it took almost two days
to run all four scenarios, which is mainly due to the computation time of the probabilistic linking of
the three sources.
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Figure 4.2: Density plots of two PSEs with three dependent variables and four scenarios.
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covariates but also the quality of linkage keys. This last element should not be un-
derestimated. When for instance the records in the rematch study are based on their
high – quality linkage keys (which makes clerical review easier), they might suffer less
from linkage errors than other records. This will lead to a biased correction. Another
issue is the size of the rematch study, when the sources contain some small groups
of records, it might be hard to find enough records of this group to perform clerical
review. How large the impact of such issues is, requires further research. Also, we
should note that we paid little attention to the impact of the exact linkage procedure.
We developed the WMR model in the context of sequential linkage, in which first two
sources are linked, and a third source is linked to this combined source. We think that
in theory the order of linkage does not matter and also pairwise linkage (link each pair
and then combine them into one) or simultaneous linkage (link all sources at once) can
be incorporated into the WMR model, although this would require further research.
In practise the exact linkage strategy may play a role, mainly because linkage is also
often used to enrich sources. When, for instance one source contains data on say gen-
der and another on income, the combined source usually contains both, which will
probably affect the quality of linkage with a third source that also contains gender
and income. Another point that deserves some discussion is the ‘individual starting
weight of 1’. Lists or registers of individuals sometimes also contain individual sam-
ple weights, which indicate the size of the group that this individual represents as part
of the total population. The proportion of the sample weights of these new records in
relation to the weights of records that were already known from previous records can
be used to improve these starting weights. Furthermore, when additional sources also
contain sample weights they can be used to construct the cell counts in the contin-
gency table by adding up over weights instead of counting the records. In this way we
would get ‘linkage error corrected sample weights’. How and when sample weights
can be combined with linkage and linkage error correction requires further research.

4.7 Appendix

4.7.1 numerical calculation example

As an illustration of the method we present one of the replications generated under
scenario 4 in the simulation study. In Table 4.3 we show the total cell counts with
linkage errors together with the audit study cell counts. In the last column we show
the correction of groups of individual weights. Table 4.3: Contingency table and cor-
rection of weights after linking S1 and S2.

Table 4.4 is like Table 4.3 but shows the linkage of Ñ 2
S1S2 and S3, together with the

audit study. The last column shows the second update of weights. Note the relation
between the columns ñS1S2X and w2

r in Table 4.3, and column ñÑ2S3X in Table 4.4,
which can be seen by 2784 × (222/264) + 1080 × (180/138) + 164 × (64/12) = 502.2 +
4122.25 for X = 0 and 2030×(152/226)+2292×(314/240)+82×(44/10) = 1789+2235.81
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Table 4.3: Contingency table and correction of weights after linking S1 and S2.

Linkage cells Covariate Cell counts Weight correction

S1 S2 X ñS1S2X ñk
∗

S1S2X
nk
∗

S1S2X
w2
r

1 1 0 2784 264 222 r ∈ Ñ 2
110 : w2

r = 222/264

1 0 0 1080 138 180 r ∈ Ñ 2
100 : w2

r = 180/138

0 1 0 164 12 64 r ∈ Ñ 2
010 : w2

r = 64/12

1 1 1 2030 226 152 r ∈ Ñ 2
111 : w2

r = 152/226

1 0 1 2292 240 314 r ∈ Ñ 2
101 : w2

r = 314/240

0 1 1 82 10 44 r ∈ Ñ 2
011 : w2

r = 44/10

for X = 1

Table 4.4: Contingency table and correction of weights after linking Ñ2 and S3.

Linkage cells Covariate Cell counts Weight correction

Ñ 2 S3 X ñÑ2S3X ñk
∗

Ñ2S3X
nk
∗

Ñ2S3X
w3
r

1 1 0 502.2 62.74 36 r ∈ Ñ 3
110 : w3

r = w2
r (36/62.74)

1 0 0 4122.25 410.34 412 r ∈ Ñ 3
100 : w3

r = w2
r (412/410.34)

0 1 0 344 38 2 r ∈ Ñ 3
010 : w3

r = 1(2/38)

1 1 1 1789 194.14 174 r ∈ Ñ 3
111 : w3

r = w2
r (174/194.14)

1 0 1 2935.81 272.39 296 r ∈ Ñ 3
101 : w3

r = w2
r (296/272.39)

0 1 1 1798 188 14 r ∈ Ñ 3
011 : w3

r = 1(14/188)

Finally, Table 4.5 shows the contingency tables that underly that MR models. In
the three rows at the bottom there are the different Poisson regression estimates of
the unobserved parts of the population, for X = 0 and X = 1, together with the total
population size estimate.

4.7.2 Setup of the simulation study

From the available dataset we use the file “person list.csv”. This list contains
both a perfect identifier (id - code) and linkage keys (e.g. surname, address) and can
therefore be used to link records both perfectly (i.e. deterministically without any er-
rors) and probabilistically. In this simulation study we use a set of three linkage keys .
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Table 4.5: Contingency table and correction of weights after linking S1, S2 and S3.

Linkage cells Covariate Cell counts and sum of weights w3
r

A3 X nS1S2S3X ñS1S2S3X ňS1S2S3X

1 1 1 0 200 264 165.99
1 1 0 0 2328 2440 2060.1
1 0 1 0 82 106 79.34
1 0 0 0 1254 974 1275.56
0 1 1 0 44 14 42.85
0 1 0 0 704 150 803.23
0 0 1 0 18 344 18.11
1 1 1 1 452 766 461.74
1 1 0 1 872 1264 910.45
1 0 1 1 1102 866 1015.47
1 0 0 1 1896 1426 1998.07
0 1 1 1 1896 32 126.19
0 1 0 1 310 50 235.61
0 0 1 1 94 1798 133.89

Total 9506 10574 9327

0 0 0 0 378.34 4774.67 439.70
0 0 0 1 173.25 2803.45 249.46
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In order to have a certain degree of linkage errors, in each linkage key in each source,
we replace 3% of the records with a random value that can also be found in the pop-
ulation for that linkage key (e.g. replace a surname with a random surname), where
in each source, each record has the same probability to be selected. Furthermore, the
list contains several covariates, of which we use ‘SEX’ as covariate X to affect cap-
ture probabilities. For each replication first a random population of 10,000 records
is generated (without replacement) from the person list. Our aim is then to generate
three sources of different sizes from this population (approximately 8,000, 5,000 and
2,000 records) that may suffer from source and covariate dependence. The introduc-
tion of source dependence is not straightforward, because source dependence implies
that no single source may be independent of other sources. However, when the first
source would be generated while other sources do not yet exist, this first source is
independent of these other sources. Therefore, before the first source is generated,
we first generate three so called latent sources U k with k = 1,2,3 of 8,000 units each,
which are simply random samples from the population of 10,000. These three latent
sources allow us to introduce dependencies between sources such that no source Sk is
independent of the other sources. This is done by giving each unit u = 1, . . . ,10,000 a
probability to be in each source K by:

P k
u

[
Sk = 1

]
= 1/

(
1− exp

(
−µku

))
, (4.10)

where for each population unit u we can write µku = δk
U1U

1
u + δk

U2U
2
u + δk

U3U
3
u + δkXXu .

Given Eq. (4.10) we can vary δ’s and hereby control dependencies between any
source in Sk and the other two sources in Sk and the covariate. For instance, when
δ1
U1 ,δ

2
U1 ,δ

1
U2 ,δ

2
U2 , 0, the probability of a record to be in S1 depends on it being in S2

while the probability to be in S2 also depends on it being in S1. Furthermore, the δ’s
control the size of each source. The values for the δ’s in the simulation study are in
Table 4.6.

Because the varying of δ’s affects the capture probabilities of units, different δ’s
also correspond to different estimates of the β’s from the Poisson regressions. To as-
sure that by varying δ’s we introduce a substantial source and covariate dependence,
Table 4.7 presents the (corresponding) mean values of estimated β’s over all replica-
tions of the benchmark case of no linkage errors.

Table 4.7 clearly shows that the estimated β’s correspond to the four scenarios.
Each scenario has a column and if for that scenario a statistical significant relation
does not exist for a certain parameter, this is indicated by a “×”. Statistical signifi-
cant relations are indicated by a value which is the mean value of the corresponding
estimated β for that relation. In scenario 1 neither covariate X nor another source
plays a significant role in describing the observed frequencies. In scenario 2 the ob-
served frequencies do not depend on other sources but do depend on X. In scenario 3
the covariate X is not significant while the other sources have significant explanatory
power. In scenario 4 both X and the other sources play a significant role. Finally, the
last necessary elements of the simulation study are Ň 2∗ and Ň 3∗ , which are generated
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Table 4.6: Parameter values of the four differ-
ent scenarios.

Scenario 1 δk
U1 δk

U2 δk
U3 δX

µ1
u 6.3 0 0 0

µ2
u 0 3.5 0 0

µ3
u 0 0 1.9 0

Scenario 2 δk
U1 δk

U2 δk
U3 δX

µ1
u 5.6 0 0 2

µ2
u 0 4.6 0 -2

µ3
u 0 0 0.42 2

Scenario 3 δk
U1 δk

U2 δk
U3 δX

µ1
u 4.8 1.8 0 0

µ2
u 0 3.5 0 0

µ3
u 0 -0.5 2.3 0

Scenario 4 δk
U1 δk

U2 δk
U3 δX

µ1
u 3.9 1.5 0 2

µ2
u 1.5 3.3 0 -2

µ3
u 0 -0.5 1.8 1

Table 4.7: Parameter values of the four differ-
ent scenarios.

Scenario 1∗ 2∗ 3∗ 4∗

Variable⧹Estimate β̂ β̂ β̂ β̂

Constant 13.0 12.8 13.0 13.3
S1 1.3 1.1 1.2 0.3
S2 × 0.7 -0.2 ×
S3 -1.3 -2.7 -1.3 -1.6
X × -0.1 × -0.6
S1X × 0.6 × 1.5
S2X × -1.5 × -1.9
S3X × 2 × 0.8
S1S2 × × 0.4 1.1
S1S3 × × × ×
S2S3 × × -0.2 -0.2
S1S2X × × × 0.2
S1S3X × × × ×
S2S3X × × × 0.1

∗ indicates “scenario without linkage er-
rors”

by first selecting a random 10% (without replacement) of the population and within
this selection only keeping those records that are also in S1 and S2 (for Ň 2∗) or S2 and
S3 (for Ň 3∗). We compare three types of PSEs, naı̈ve, perfect, and weighted. Naı̈ve
PSEs are estimates based on ñ, so linkage errors are present but ignored. Perfect PSEs
are based on n, so linkage errors are not present (and ignored). Weighted PSEs are
based on ň, so linkage errors are present but if the model works it should correct for
them. Finally, for each scenario and PSE type, the DS and MR model are applied.
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Chapter 5

From Quarterly to Monthly Turnover
Figures Using Nowcasting Methods

Short-term business statistics at Statistics Netherlands are largely based on
Value Added Tax (VAT) administrations. Companies may decide to file their tax
return on a monthly, quarterly, or annual basis. Most companies file their tax
return quarterly. So far, these VAT based short-term business statistics are pub-
lished with a quarterly frequency as well. In this article we compare different
methods to compile monthly figures, even though a major part of these data
are observed quarterly. The methods considered to produce a monthly indicator
must address two issues. The first issue is to combine a high- and low-frequency
series into a single high-frequency series, while both series measure the same
phenomenon of the target population. The appropriate method that is designed
for this purpose is usually referred to as “benchmarking”. The second issue is
a missing data problem, because the first and second month of a quarter are
published before the corresponding quarterly data are available. A “nowcast”
method can be used to estimate these months. The literature on mixed frequency
models provides solutions for both problems, sometimes by dealing with them
simultaneously. In this article we combine different benchmarking and nowcast-
ing models and evaluate combinations. Our evaluation distinguishes between
relatively stable periods and periods during and after a crisis because different
approaches might be optimal under these two conditions. We find that during
stable periods the so-called Bridge models perform slightly better than the al-
ternatives considered. Until about fifteen months after a crisis, the models that
prone heavily on historic patterns such as the Bridge, MIDAS and structural time
series models are outperformed by more straightforward (S)ARIMA approaches.

This chapter is published in the Journal of Official Statistics: Zult, D.B. (DZ), Krieg, S. (SK),
Schouten, B. (BS), Ouwehand, P. (PO) and van de Brakel, J. (JvdB), 2023. From Quarterly to Monthly
Turnover Figures Using Nowcasting Methods. Journal of Official Statistics, Vol. 39, No. 2, 2023, pp.
253–273 https://doi.org/10.2478/jos-2023-0012. Author contributions: The department of busi-
ness statistics at Statistics Netherlands posed the problem, DZ, SK, PO and JvdB discussed the problem
and ideas, BS provided the data for an early version of the article, DZ, PO and BS discussed the non-
STM models, SK and JvdB discussed the STM models and SK did the STM calculations. DZ did the
other calculations, analyses and wrote most of the text while in regular discussions with SK, who also
wrote the text that concerns STM theory. SK, PO and JvdB discussed and edited the text.
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5. From Quarterly to Monthly Turnover Figures Using Nowcasting Methods

5.1 Introduction

The purpose of national statistical institutes (NSIs) is to publish relevant, accurate and
timely official statistics. However, the production of high-frequency timely statistics
generally compromises the accuracy of these figures. This trade-off is even increased
if a major part of the data are observed on a frequency that is lower than the required
output. For instance, in The Netherlands, short-term business statistics rely for the
most part on turnover obtained from value added tax (VAT) administrations, where
most companies declare turnover either quarterly or monthly. The current approach
is to wait for the quarter to be finished and produce a quarterly statistic for a PPC,
based on turnover data from both monthly and quarterly declarants that are available
at the publication date. The question is whether the same data can also be used to
produce an earlier, more frequent, and sufficiently accurate monthly estimate at this
detailed level. This question has two distinctive elements.

The first element is an increase in frequency, which can be achieved with a method
referred to as benchmarking (BM). BM models are extensively discussed in the litera-
ture, such as in the “ESS Guidelines on temporal disaggregation, benchmarking, and
reconciliation” (Eurostat, 2018). In the case of sufficiently long time series, which is
what we assume in this paper, these guidelines recommend BM models that are based
on movement preservation as in Denton (1971); Chow and Lin (1971); Dagum and
Cholette (1975). We will briefly discuss these BM models in Section 5.3.

The second element is an increase in timeliness, which can be achieved with a
method referred to as nowcasting (NC). The most straightforward NC approach would
be to extrapolate the monthly series obtained with BM by change in turnover of
monthly declarants over the previous and current month. This would closely follow
the current production process of the quarterly series and is therefore attractive. How-
ever, because the monthly declarants may constitute a selective and/or small sample
of the population, this nowcast probably needs to be adjusted as soon as the quarterly
data is available. To minimize this adjustment, it is worthwhile investigating some
more sophisticated NC models.

NC models are extensively discussed in literature, such as in in the “Handbook of
rapid estimates” (Eurostat, 2017). This includes mixed frequency models that com-
bine the BM and NC problem in one model. We discuss NC models in more detail
in Section 5.2.3. Simultaneous (multivariate) estimation of series for different PPCs
might improve the accuracy of the estimates. We leave this for further research.

Another sample selection and sample size bias correction approach would be to
weight the monthly declarants to the entire population with the help of background
characteristics and trends. This method is called pseudo design-based estimation
(Baker et al., 2010). In our case we deem this approach less fruitful, because the
background characteristics that are available are limited (i.e. number of employees).
However, maybe by using historic turnovers on the company level in an imputation
model, it might be possible to improve our auxiliary monthly series and hereby our
nowcasting results. This is outside the scope of this paper but might be worthwhile
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further research.
It is important to note that the combination of a BM and NC model introduces

an evaluation problem. Normally NC models can be evaluated by simply waiting
for the future to unfold, after which a prediction can be compared with a true value.
However, because some of the respondents respond on a quarterly basis, the unfolding
BM model monthly series may be more accurate than the NC model results, but they
are not true values. Which (type of) NC model is best suited for this problem is not
trivial and is an important topic of this paper. Furthermore, this question requires
elaboration on evaluation criteria, which are therefore discussed in Section 5.2.4.

A final element that deserves special attention, especially in the light of the recent
COVID-19 pandemic and resulting lockdowns, is the impact of extreme (economic)
developments. Therefore, in Section 5.2.4, we apply and evaluate the BM and NC
models discussed in Section 5.2 both in stable and extreme conditions. Both con-
ditions are present in several economic sectors in the Netherlands over the period
January 2010 to June 2020, which can be characterized as a long, economically stable
period that ends with the COVID-19 pandemic. To further investigate the long term
impact of a crisis on the different models, we also simulate different types of crises
and evaluate how the accuracy of the nowcasts is affected during and after a crisis.
In Section 5.4 we conclude. The supplemental file that belongs to this paper contains
some additional technical details about the models discussed in this article.

5.2 Notation benchmarking models and nowcasting
models

This section introduces some notation and assumptions (Section 5.2.1) and discusses
BM (Section 5.2.2) and NC models (Section 5.2.3). In the main text we discuss the
models primarily at the conceptual level with a modest level of technical detail be-
cause they are already well described in the literature. We first introduce some nota-
tion that allows us to describe the problem and the BM and NC models.

5.2.1 Notation

Let yQt be an observed quarterly time series with t = 1,2, . . . ,Tq where t = 1 is the
first month of the index series (e.g. January 2010) and Tq is the third month of the
last available quarter. Furthermore, Q(t) is a function that transforms t to the first
month of its corresponding quarter. This implies, for example, that when t = 11, then
Q(t) = 10, or when t = 25, then Q(t) = 25. It is understood that yQt is written as a
monthly series, where the months within a quarter are equal, i.e. yQQ(t) = yQQ(t)+1 =

yQQ(t)+2. The three equal elements yQQ(t), y
Q
Q(t)+1 and yQQ(t)+2 are all observed at time

Q(t) + 3 (i.e. the first month of the next quarter). In the intermediate months, yQt does
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not change. Furthermore, there is a monthly auxiliary time series xt with t = 1,2, . . . ,Tm
where xt is observed in month t and Tm is the last available month (i.e. Tq = Q(Tm) −
1). In other words, the monthly series xt always extends 1, 2 or 3 months beyond
the quarterly series yQt . Next, we define an unobserved monthly time series yMt with
t = 1,2, . . . ,Tmax, (Tmax ≤ Tm) which is simply the quarterly series yQt , disaggregated
to a monthly series that goes into a yet unobserved future (until Tmax). The series
yQt and yMt are related within each quarter by either their mean (e.g. in case of an
index) or their sum (e.g. in case of turnover). Therefore, we can write either yQQ(t) =(
yMQ(t) + yMQ(t)+1 + yMQ(t)+2

)
/3 or yQQ(t) = yMQ(t) + yMQ(t)+1 + yMQ(t)+2 with t = 1,2, . . . ,Tq. Ideally,

we would observe yMt , but instead we only observe the quarterly aggregate yQt and
the related variable xt. Therefore, we also define ŷMt with t = 1, . . . ,Tm, which is an
estimate of yMt based on yQt and xt. Note that ŷMt is the target series of this paper.
Because ŷMt depends on the available information at the time of estimation, we also
define ŷMt|T , which is ŷMt estimated given the information available at time T . The

appropriate method to estimate ŷMt|T depends on the data available about time t at

time T . When both yQt and xt are available for t (i.e. for t ≤ Tq), ŷMt|T can be estimated

with a BM model. We denote this BM estimate by ŷM,BM
t|T where BM indicates the type

of BM model. When only xt is available for time t (i.e. for Tq < t ≤ Tm), ŷMt|T should be

estimated with a NC model, denoted as ŷM,BM,NC
t|T where NC indicates the NC model.

Note that ŷM,BM,NC
t|T also contains BM in the superscript, because a nowcast changes

when the target series is the result of a different BM model. The most interesting
element in ŷMt from a methodological perspective is ŷMTm|Tm . At this month Tm, xt with

t = 1, . . . ,Tm is known, but yQTm is not. The full series ŷMt|Tm can be written as:

ŷMt|Tm =


ŷM,BM
t|Tm

for t = 1, . . .Tq

ŷM,BM,NC
t|Tm

for t = Q(Tm), . . . ,Tm
(5.1)

The series ŷM,BM
t|Tm

is based on a BM model that uses yQt and xt with t = 1, . . . ,Tq as input.

This implies that each element in ŷM,BM
t|Tm

changes each time a new quarter becomes

available. The series ŷM,BM,NC
t|Tm

is based on both a BM and NC model and uses yQt with

t = 1, . . . ,Tq and xt with t = 1, . . . ,Tm as input, so ŷM,BM,NC
t|Tm

changes each time a new
month in xt becomes available.

Finally, some nowcasting models provide a quarterly estimate ŷQ,NC
t|Tm

for t =
Q(Tm), . . . ,Q(Tm) + 2. Therefore we define:

ŷMt|Tm =


ŷM,BM
t|Tm

for t = 1, . . .Tq

ŷM,BM,NC
t|Tm

for t = Q(Tm), . . . ,Tm,
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x̂t =


xt for t = 1, . . .Tq

x̂NC
t|Tm

for t = Tm + 1, . . . ,Q(Tm) + 2,

which are simply the series yQt and xt extended with nowcasts for missing values in
the current quarter. In this paper, xt is based on the monthly VAT declarants and yQt
is based on the combination of all declarants (monthly and quarterly). Furthermore,
both series are assumed to be index series, as this is the publication format of these
short-term business statistics.

5.2.2 Benchmarking models

BM models have the aim of temporally disaggregating a low frequency series into a
high-frequency series, with the help of (an) auxiliary high-frequency series. BM can
be considered a specific case of temporal disaggregation (Eurostat, 2018), where the
high-frequency indicator series and the low frequency benchmark series describe the
same phenomenon, as is the case in our problem. Extensive literature is available on
BM models, see Eurostat (2018) for an overview. The most basic BM model is devel-
oped by Denton (1971); Dagum and Cholette (1975, DC) and a slightly more advanced
BM model is developed by Chow and Lin (1971, CL). The DC and CL models are
widely used in the production of official statistics and are implemented in standard
software (Barcellan & Buono, 2002). Both models are also discussed in the “Hand-
book of Rapid Estimates” (Eurostat, 2017), because they also might be considered as
mixed frequency nowcasting models, which will be discussed in the next section. Both
models can disaggregate a quarterly series yQt into a monthly series with the help of
a monthly auxiliary series xt for t = 1, . . . ,Tq, such that both series are consistent in
each quarter. Furthermore, both models aim at movement preservation of the high-
frequency series xt. There are also other BM models available, such as by Fernández
(1981) and Litterman (1983), but they are better suited for non-stationary residual
models, which in our case is less likely because we use two series that measure the
same phenomenon. Both the DC and CL model require high and low-frequency data
over the same period. This implies that a new monthly benchmarked estimate ŷM,BM

t|Tm
can be obtained only each time new quarterly data becomes available.

The difference between CL and DC is that DC aims to preserve the movement by
mimicking the month-on-month growth in xt as close as possible (minimising either
the proportional or absolute deviations), while CL is a regression approach that con-
trols for the estimated relation between yQt and xt. Furthermore, the CL model can
deal with more than one auxiliary time series. When the pattern in xt is representa-
tive for the pattern in yQt , DC and CL produce similar results. However, because CL
also estimates the relation (coefficient and statistical significance) between yQt and xt,
it may produce a more accurate result, so CL is usually preferred. Nonetheless, be-
cause the DC model is widely used and intuitively attractive, we apply and test both
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models. The BM of both CL and DC is computed using R (R Core Team, 2022), us-
ing the R package “tempdisagg” (Sax & Steiner, 2013) and the function “td”. In this
function we set “method = chow-lin-maxlog” for CL and “method = denton-
cholette” for DC. The technical details of both BM models are further discussed in
Sax and Steiner (2013).

5.2.3 Nowcasting models

In literature a wide variety of nowcasting models is discussed. An extensive litera-
ture overview is provided by the Handbook of Rapid Estimates (Eurostat, 2017). This
Handbook also discusses mixed frequency models, which combine both temporal dis-
aggregation/BM and nowcasting models by dealing with both issues simultaneously
as a single missing data problem. For instance, the CL and DC BM models from
the previous section can also be considered a mixed frequency NC model. Many of
the advanced mixed frequency models are designed to deal with larger sets of aux-
iliary series and apply multivariate estimation. For example, recently Antolin-Diaz,
Drechsel, and Petrella (2021) propose a Bayesian Dynamic Factor model that allows
for time series with different frequencies to estimate daily GDP growth. Their model
allows the use of a large set of time series and takes things like movements in long-
run growth, time-varying uncertainty, and fat tails into account, by utilizing lag-lead
properties of, and correlations between, auxiliary macroeconomic series with different
frequencies. Frequentist versions of dynamic factor time series models are proposed
by Giannone, Reichlin, and Small (2008) and Doz, Giannone, and Reichlin (2012).
Another option is to use a vector autoregression (VAR) model, which estimates dif-
ferent PPC series simultaneously, (see e.g. Sims, 1980; Stock & Watson, 1980). These
complex and data intensive models are beyond the scope of this paper, as we only
consider the case where for each nowcast only one high-frequency auxiliary series
and one low-frequency target series, which both measure the same phenomenon, are
used. This simple approach has the advantage that the resulting estimates have a rel-
atively straightforward interpretation, because the estimates do not depend on a large
set of auxiliary series and no mutual dependencies between different PPC series are
introduced.

We separate the NC models discussed in this paper into two groups. The first
group we refer to as NC after BM models, which are the models that nowcast the
high-frequency BM series directly with the help of the auxiliary series. We will discuss
them in Section 5.2.3.1. The second group we refer to as NC before BM models. These
models first nowcast the quarterly and monthly series for the current quarter, and
then apply BM to obtain a nowcast for the current month. We will discuss them in
Section 5.2.3.2.
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5.2.3.1 NC after BM

The most basic nowcasting model we consider is a simple extrapolation (SE) nowcast
model. This can be written as:

ŷM,BM,SE
t|Tm

= ŷM,BM
Tq |Tm

(
xt/xTq

)
for t = Q(Tm), . . . ,Tm. (5.2)

This straightforward nowcasting approach is equivalent to the mixed frequency now-
casting model that results from extrapolating the DC BM model. However, equation
(2) is slightly more general in the sense that ŷM,BM

Tq |Tm
can also be the result of a CL (or

any other) BM model.
The second nowcasting model follows directly from the CL BM model, which can

also be considered a mixed frequency NC model. CL performs linear regression on
the quarterly level with yQt and xQt (xQt is xt aggregated to the quarterly level) and the
estimated linear relation with xt can be used to extrapolate over t = Q(Tm), . . . ,Tm. This
can be written as:

ŷM,BM,CL
t|Tm

= βCLxt for t = Q(Tm), . . . ,Tm, (5.3)

with βCL the CL regression coefficient.
A third type of nowcasting model is the well-known (seasonal) autoregressive-

integrated moving average ((S)ARIMA) model (Box, 2013). (S)ARIMA can also incor-
porate auxiliary variables to obtain a nowcast of a target series. To select an appropri-
ate (S)ARIMA model, a standardized stepwise procedure explained in Hyndman and
Khandakar (2008) is used. This method is implemented in their R-package “fore-
cast” and is used in this paper to obtain the nowcast ŷM,BM,ARIMA

t|Tm
and ŷM,BM,SARIMA

t|Tm
.

We apply both models because it is unclear whether the auxiliary variable can cover
the seasonal pattern, which is present in most economic time series.

Another method which also applies SARIMA modeling is known as the
Benchmark-to-Indicator-ratio (BIR) model (Bloem, Dippelsman, & Maehle, 2001;
Daalmans, 2018). Its first step is to estimate a SARIMA model of the ratio ŷM,BM

t|Tm
/xt

for t = 1, . . . ,Tq, then obtain a SARIMA nowcast of the ratio series ŷM,BM,BIR
t|Tm

/xt for

t = Q(Tm), . . . ,Tm and finally obtain a nowcast ŷM,BM,BIR
t|Tm

by multiplying by xt for
t = Q(Tm), . . . ,Tm. The BIR model might give better results when the ratio between
ŷM,BM,BIR
t|Tm

and xt is fixed but should be used with care when xt can have values that
are close to zero.

5.2.3.2 NC before BM

NC before BM models first perform a NC model on xt and yQt to obtain x̂t and ŷQt
and then use these to obtain ŷM,BM,NC

t|Tm
with a BM model. This approach might be

advantageous when the relation between the series yQt and xt is stronger on the quar-
terly level. To obtain ŷQt|Tm , we consider the Bridge, Mixed Data Sampling (MIDAS),
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and Structural Time Series (STS) models. In the Bridge and MIDAS model, x̂t is esti-
mated with a univariate SARIMA model with xt as input, while in the STS model it is
estimated simultaneously with ŷQt .

The Bridge model, see Baffigi, Golinelli, and Parigi (2004); Angelini, Banbura, and
Rünstler (2008) for extensive details, consists of a series of SARIMA models. First, x̂t
is estimated. Next, a SARIMA model is estimated with yQt as dependent and xQt as
auxiliary variable. Then, by using x̂Qt , an estimate of ŷQt is obtained. Finally, a BM
model with x̂t and ŷQt gives the estimate ŷ

M,BM,Bridge
t|Tm

.
The MIDAS model approach (see Ghysels, Santa-Clara, & Valkanov, 2004; Ghysels,

Sinko, & Valkanov, 2007, for extensive details) provides (just like the Bridge model) a
quarterly estimate ŷQ,MIDAS

t|Tm
and a monthly estimate ŷM,BM,MIDAS

Tm|Tm
. The MIDAS model

is a regression and filtering technique that incorporates different frequencies. The
difference with the Bridge model is that the MIDAS model allows for the modelling
of lags in both the quarterly and monthly series simultaneously. According to the
literature (see e.g. Asimakopoulos, Paredes, & Warmedinger, 2008), an advantage of
the MIDAS model as compared to some alternatives such as state space and mixed fre-
quency VAR models, is that the MIDAS model is more parsimonious and less sensitive
to specification errors due to the use of non-linear lag polynomials. We estimated the
MIDAS model in the R package “midasr”, see Ghysels, Kvedaras, and Zemlys (2016)
and the function “midas r” with some basic settings.

A Structural Time Series (STS) model approach (see Durbin & Koopman, 2012),
is not focused on obtaining ŷQ,NC

t|Tm
alone, but instead decomposes a time series into

a trend, a seasonal component and additional noise. The details of the STS model
for this application are described in the supplemental file. In this paragraph we only
highlight the novel aspect of modelling the seasonal component. Both yQt and xt with
t = 1, . . . ,Tm are used as input of a multivariate STS model, i.e. both series are mod-
elled jointly in a bivariate setting. Whereas for the other methods the quarterly value
is repeated 3 times in the quarterly series, for the STM the value of this series is miss-
ing in the first and second month of each quarter. The quarterly value is used in the
third month of each quarter. The STS model approach allows for missing values in
the series. In this application, there are missing values in the last quarter, the model
estimates for these periods are used as nowcasts. Similarly, as under the other ap-
proaches discussed, the auxiliary monthly series is used to improve the accuracy of
the nowcasts. But under the STS model approach, this happens by explicitly mod-
elling a correlation between trend disturbance terms of both series. We test two dif-
ferent trend models, the local and smooth trend model. For the local trend model, in
the case of zero correlation between yQt and xt, the predictions are a flat line. For the
smooth trend model, in the case of zero correlation between yQt and xt, the predictions
are a linearly increasing or decreasing trend. In both models, in case of non-zero cor-
relation, the predictions are adjusted by the auxiliary monthly series. The STS model
can only disaggregate the trend component in monthly estimates. For the seasonal
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component, an additional BM step, just like with the Bridge and MIDAS model, is
required.

We developed a new approach to model the seasonal component of the target series
yQt . This seasonal model, which takes missing values into account, is an extension of
the known dummy seasonal model.

s
y
t =

Sy
t if t is the third month of the quarter

0 if t is the first or second month of the quarter,
(5.4)

with

S
y
t =


S
y
t−10 if t is the first month of the quarter

S
y
t−11 if t is the second month of the quarter
−Sy

t−3 − S
y
t−6 − S

y
t−9 −ω

y
t if t is the third month of the quarter,

(5.5)

E(ωy
t ) = 0, (5.6)

Cov(ωy
t ,ω

y
t′ ) =

σ2
ω,y if t = t′

0 if t , t′

With (5.4) - (5.6) only the quarterly seasonal pattern of the target series yQt can be
estimated. The seasonal component is related with the observed series in the mea-
surement equation of the state space model through s

y
t defined in (5.4). Since the

observations are missing for the first two months of every quarter, syt is equal to zero
for the first two months and set equal to the quarterly pattern defined with s

y
t in the

third month of the quarter. Equation (5.5) defines a quarterly seasonal pattern for the
months. It is assumed that the monthly seasonal pattern is constant within each quar-
ter. The first two rows of (5.5) show that during the first two months of a quarter, the
seasonal pattern is equal to the value of the quarter in the previous year. The third row
of equation (5.5) is like the standard dummy seasonal model for a quarterly series. In
the third month of each quarter, except for the last quarter, the quarterly observation
becomes available and the seasonal pattern for the last quarter (syt ) is updated using
the values of the previous three quarters (Sy

t−3, Sy
t−6 and S

y
t−9) and small change via ω

y
t .

The seasonal pattern of the monthly auxiliary series xt is modelled with a standard
trigonometric seasonal component defined at a monthly frequency.

Under the assumption that the seasonal patterns of the monthly declarants and the
quarterly declarants is similar, it is desirable that this monthly pattern is adopted by
the quarterly series. Nevertheless, (smaller) differences between the seasonal patterns
of the monthly and the quarterly series should be considered. This cannot be achieved
with the structural time series model. Instead, DC or CL can be applied. It is expected
that DC is suboptimal because this model cannot handle negative values easily.
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5. From Quarterly to Monthly Turnover Figures Using Nowcasting Methods

The other components of the STS model are standard. Some adjustments are
needed to take the relationship of the monthly and the quarterly figures of the yt
into account. Other adjustments are necessary to consider that the input series are
partly based on the same enterprises.

The ideas behind the STS model approach are similar to the ideas behind the
Bridge model approach. In both cases the auxiliary series is used to predict the tar-
get series. There are, however, some differences. First, in the STS model approach
the auxiliary series is included as another dependent series and a correlation between
trend disturbance terms of target series and auxiliary series is modelled. Both this
correlation and the regression parameter in the Bridge approach are assumed to be
constant over time. Second, in the STS approach all series are modelled and esti-
mated simultaneously, including prediction of auxiliary series and target series and
BM of the trend. Only the BM of the seasonal pattern is performed afterwards.

It might be worthwhile to express the various steps required to fit Bridge models
in one state space model. The major advantage of such an approach is that it gives a
more realistic approximation of the uncertainty of the nowcasts, since it avoids that
estimates obtained in a particular step are treated as known in the next step. Casting
a Bridge model in state space form requires that the BM of the target series in the fi-
nal step is conducted with CL. Subsequently the target series and the auxiliary series
are combined in a bivariate state space model, where both series are modelled with
a SARIMA model, see Durbin and Koopman (2012, Ch. 3) for details. The SARIMA
model for the target series must also include the auxiliary series as a regression com-
ponent. At the same time the target series, observed at a quarterly frequency, must be
modelled at a monthly frequency. Investigating the possibilities of this approach is
left for further research.

5.2.4 Evaluation method

Altogether we can distinguish eleven different nowcasting models (i.e. SE, CL extrap-
olation, BIR, ARIMA, SARIMA, Bridge, MIDAS, and the local and smooth trend STS
models with and without correlation) that are combined with two BM model variants.
To compare their quality, a standard method to evaluate models is to make out-of-
sample predictions and check how close these predictions are to the actual outcome.
This can be measured by calculating e.g. the mean absolute error (MAE), which in
this case can be computed at the monthly and quarterly level. We choose to look at
the MAE because it is also applied in the quality assessment of the short-term business
statistics at Statistics Netherlands.

As a benchmark series we use ŷM,CL
t|Tmax

, which is the with CL BM series of yQt (with xt)
with t = 1, . . . ,Tmax, where Tmax is simply the last month for which both monthly and
quarterly data are available. This allows us to compare each ŷM,BM,NC

Tm|Tm
with ŷM,CL

Tm|Tmax
,

where ŷM,CL
Tm|Tmax

is an estimate that is based on a maximum amount of available data.
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The MAE of each series (denoted as MAEM,BM,NC) can be written as:

MAEM,BM,NC =

∑Tmax
Tm=T0

∣∣∣∣ŷM,BM,NC
Tm|Tm

− ŷM,CL
Tm|Tmax

∣∣∣∣
Tmax − T0

, (5.7)

where T0 is the first month of the evaluation period. T0 should not be too early in the
time series, because each model requires a period of calibration. The quarterly MAE
(denoted as MAEQ,BM,NC) can be obtained by:

MAEQ,BM,NC =

∑Tmax
Tm=T0

∣∣∣∣∣(∑Q(t)+2
Tm=Q(Tm) ŷ

M,BM,NC
Tm|Tm

)
/3− ŷQTm

∣∣∣∣∣
3(Tmax − T0)

, (5.8)

The MAEQ,BM,NC has the advantage that the estimations are compared with the ob-
served series yQt instead of the estimated ŷM,CL

t|Tmax
.

5.3 Empirical evaluation of the nowcast models

In this section we apply and compare the models that were introduced in Section 5.2.
We first describe the data in Section 5.3.1. Next, in Section 5.2.4, we discuss how the
models compare in terms of their MAE. In the last subsections (5.3.2 and 5.3.3) we
discuss how they perform before, during and after a simulated economic shock.

5.3.1 Time series data

We apply all models from Section 5.2 on index time series from twelve PPCs, that
cover the period January 2010 until June 2020, and that represent twelve differ-
ent economic activities in the Netherlands based on four-digit NACE (Nomenclature
statistique des activités économiques dans la Communauté européenne) (Eurostat,
2008). Six of them represent the hospitality sector (i.e. Hotels, Other accommodation,
Restaurants, Fast food, Catering and Pubs) and six of them represent other activities
in the service sector (i.e. Publishers, Legal activities, Accountants, Employment activ-
ities, Other Business Support, Repair of household goods). We refer to them as PPCs
1 – 12, in the same order as above. For all twelve series both yQt and xt are available.
The auxiliary monthly index series xt is based on the raw turnover data from monthly
declarants that declared turnover in all consecutive months of the series and is only
corrected for new and bankrupt companies. The published quarterly index series yQt
can be considered of higher quality, because it is based on turnover data from both
monthly and quarterly declarants, it is manually corrected for errors, for new and
bankrupt companies, and is complemented with primary data collection for a small
group of exceptionally large companies. Both yQt and xt are rescaled such that they
have a mean value of 100 in the year 2015.
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5. From Quarterly to Monthly Turnover Figures Using Nowcasting Methods

Figure 5.1: Published quarterly series and monthly auxiliary index series of PPC 1, 2 and 9, over the
period January 2010 – June 2020

The series yQt and xt for PPC 1, 2 and 9 are presented in Figure 5.1 below. These
PPCs illustrate how similar or different both series can be. In the graphs of PPC 1, 2
and 9 we see that yQt and xt can be correlated to different degrees. The graphs also
show that the seasonal pattern generally presents itself in both the monthly and the
quarterly series. However, we also see that the relation between the series may or may
not be stable over the entire period.

Furthermore, we see that the different PPCs are affected differently by the COVID-
19 pandemic in the second quarter of 2020. For example, Hotels (PPC 1) show a
big collapse in both the monthly and the quarterly series, while Accountants (PPC 9)
seem to be hardly affected. The COVID-19 pandemic raises the question whether the
models that perform best during a stable economic period also perform best during
a crisis. This is investigated by evaluating the nowcast models separately over the
period July 2016 until February 2020 (stable period) and over the period March 2020
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until June 2020 (crisis period).

5.3.2 Nowcast model performance before and during a crisis

Table 5.1 shows the nowcasting results for all BM and NC model combinations and
PPCs. The last two columns show the unweighted and weighted (by annual turnover
in 2015) results over all PPCs.

Table 5.1: MAEM,BM,NC over July 2016 – February 2020 for all 12 PPCs, plus an unweighted and
weighted mean.

In Table 5.1 the various models are evaluated on the monthly level during the
stable economic period July 2016 – February 2020. The grey cells in Table 5.1 are the
cells in the top three of lowest MAEs in each PPC column. The rows that represent
the Bridge and MIDAS models contain most of these grey cells, which implies they
generally perform better than the other models in the table. The best model according
to both the unweighted and weighted mean, is the Bridge model combined with the
Chow-Lin BM model, while the STS models in combination with DC perform clearly
worse.

Table 5.2 shows MAEs for each model/PPC combination, but now the MAE is cal-
culated over the quarters in the period July 2016 – December 2019 (The last quarter
that was unaffected by the COVID-19 pandemic).

Table 5.2 yields the same conclusion as Table 5.1, as again the Bridge and MIDAS
model perform quite well. To illustrate this graphically, Figure 5.2 shows ŷM,CL

t|Tmax
and

ŷ
M,CL,Bridge
Tm|Tm

for PPC 1, 2 and 9. It shows that ŷM,CL,Bridge
Tm|Tm

performs quite well for all
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Table 5.2: MAEQ,BM,NC over July 2016 – December 2019 for all 12 PPCs, plus an unweighted and
weighted mean.

three PPCs, except it underestimates the impact of the COVID-19 pandemic in the
last few months.

To investigate whether a different nowcast model should be preferred during a
crisis, Table 5.3 shows the MAEs for the period March 2020 – June 2020. Table 5.3
shows that during a crisis, the Bridge and MIDAS model that were fitted on data
that is largely from periods prior to the crisis, no longer provide the most accurate
nowcasts, but the more basic models perform somewhat better. This is not surprising,
because they rely less on the past and more on recent data. The DC, (S)ARIMA method
is the most accurate method among the direct ones. Surprisingly, the DC, (S)ARIMA
model is clearly more accurate than the CL, (S)ARIMA model. The explanation lies in
the AR(1) term that is part of both the CL and (S)ARIMA model. Therefore, the CL,
(S)ARIMA model puts more weight on the past than the DC, (S)ARIMA model. This
is a disadvantage during a crisis.

To further investigate how robust the above results are with respect to the MAE
evaluation method, two other evaluation methods are applied. The first method
counts in how many periods a specific method is more accurate than CL, Bridge (be-
fore the COVID-pandemic) or DC, SARIMA (during the first months of the COVID-
pandemic). The second measure counts how often the relative prediction error is over
8%. These alternative evaluation methods confirm that the earlier results based on the
MAE. Details about these alternative evaluation methods and the results are available
from the authors on request.

A question that remains unanswered in this section, is which model should be
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Figure 5.2: Quarterly, monthly and Bridge CL NC index series of PPC 1, 2 and 9, over the period July
2016 – June 2020.

preferred after a crisis? How long after a crisis will the CL, Bridge model start to
outperform the DC, SARIMA model again? This question is the subject of the next
section.

5.3.3 Nowcast model performance after a crisis

To investigate the performance of the models during a longer crisis and after a crisis,
we simulate three different types of economic shocks in January 2017. Each shock
implies that both yQ(January 2017) and x(January 2017) are divided by 2. The first type (type
1) does not recover, the second (type 2) recovers during the next quarter and the third
(type 3) slowly recovers during a period of one year. Figure 5.3 shows these three
shocks with PPC 1 as an example. In this simulation study the COVID-19 pandemic
crisis period is excluded from the analysis.
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Table 5.3: MAEM,BM,NC over March 2020 – June 2020 for all 12 PPCs, plus an unweighted and weighted
mean.

To investigate the direct and long-term effect of a shock on the performance of
different models, we calculate the MAE separately over the period January 2017 –
December 2017 for shock 1 and 3 (results in Table 5.4 and 5.7), over the period January
2017 – March 2017 for shock 2 (results in Table 5.5) and January 2018 – December
2019 for shock 3 (results in Table 5.7). Just like during the COVID-19 pandemic crisis,
the NC after BM models outperform the NC before BM models.

Table 5.4 - 5.6 show that the BIR model performs among the best three models (ac-
cording to both the weighted and unweighted mean) during all three shocks. This can
be partly explained by the simulation setup because the BIR model is based on pre-
dicting the ratio ŷM,BM

t|Tm
/xt , which is by construction hardly disturbed by our artificial

shocks, because both yQt and xt are multiplied with the same factor. In a real crisis,
both series might be affected in different ways, which could make the other methods
more competitive, as was seen in Table 5.3. Furthermore, Table 5.4 - 5.6 show that
some models have a serious problem in nowcasting the second type of shock, leading
to very high MAEs. This concerns all the NC before BM models, the CL extrapolation
and CL, (S)ARIMA models, which show large mean MAEs due to large MAEs for PPC
7, 10 and 12. The main reason for this last result is that the CL, (S)ARIMA model
estimates a correlation between yQt and xt, which might be overestimated due to the
artificial shock in both series. A final point of interest is that the NC after BM models
have more problems with the gradual recovering shock 3 than shock 1 and 2.

Next, in Table 5.7 we look at the MAEs of the different models in the second and
third year after shock 3. Just as in the analysis of the real data in Section 5.3.2, the
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Figure 5.3: Illustration of three types of shocks (as of January 2017) with PPC 1 as example.

101



5. From Quarterly to Monthly Turnover Figures Using Nowcasting Methods

Table 5.4: MAEM,BM,NC over January 2017 – December 2017 for all 12 PPCs with shock 1, plus an
unweighted and weighted mean.

Table 5.5: MAEM,BM,NC over January 2017 – March 2017 for all 12 PPCs with shock 2, plus an un-
weighted and weighted mean.

102



5.3. Empirical evaluation of the nowcast models

Table 5.6: MAEM,BM,NC over January 2017 – December 2017 for all 12 PPCs with shock 3, plus an
unweighted and weighted mean.

Table 5.7: MAEM,BM,NC over January 2018 – December 2019 for all 12 PPCs after shock 3, plus an
unweighted and weighted mean.
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CL, Bridge model is again among the better performing nowcast models during this
more stable period. We see that the NC models are less accurate than without the
(simulated) crisis (also when we recalculate Table 5.1 over the same period January
2018 – December 2019, not shown). Of course, this is no surprise.

Table 5.7 shows that in year two and three after the shock, the CL, Bridge model is
back among the best performing models, overtaking the models that did well in the
first year after the crisis. The tables of shock 1 and 2 (not shown) give the same result.
It is interesting to look more closely at the absolute error over time. Therefore, in
Figure 5.4 below we show the average absolute error over all twelve PPCs, for month 1
to 36 after the shock occurred. Figure 5.4 shows that during the first three months the
CL, Bridge model has much higher average absolute errors. This is a general pattern
that holds for all NC before BM models (not shown in the figure). Another pattern
in all three shocks is that during the first three months after a shock, the SE and BIR
model perform best.

5.4 Conclusion

In this paper the estimation of short-term monthly estimates based on a slow but accu-
rate quarterly series and a potentially selective monthly auxiliary series is discussed.
There are two problems involved. First, the quarterly series must be temporally dis-
aggregated (TD), using the monthly auxiliary series. This is done with well-known
BM models. These models, Chow-Lin (CL) and Denton-Cholette (DC), transfer the
monthly pattern of the monthly auxiliary series onto the quarterly series. Unfortu-
nately, the plausibility of these transfers cannot be evaluated in this application, since
the monthly patterns of the businesses that declare VAT on a quarterly frequency
remains unknown. The fact, however, that subject matter specialists consider the re-
sults as plausible, gives us trust in the results. A major part of the paper concerns the
second problem: monthly estimates must be computed before the quarterly figure is
available, which means that a nowcast method must be applied. In the paper differ-
ent nowcast methods are compared. In the evaluation of the methods, we distinguish
between a stable economic period, where the development of the series is quite stable
and predictable, and a period of crisis in which a sudden shock occurs. The financial
crisis of 2008 and the COVID-19 pandemic are two examples of such crises, of which
the latter is considered in this paper. The methods are applied to twelve series that are
published by Statistics Netherlands. It is found that during a stable period most of the
methods we consider perform quite well. The so-called Bridge, CL model performs
slightly better than the other methods. This method first predicts both the quarterly
and the monthly series (using a SARIMA-model) of the current quarter. Then, a CL
BM model is applied. In a period of crisis, the Bridge model is no longer the most
accurate model. However, during a shock most models perform worse than during a
stable period. Right after a shock, NC after BM models perform better than the NC
before BM models. The best method in a period of crisis seems to be the DC, SARIMA
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5.4. Conclusion

Figure 5.4: Mean absolute error(MAE) over all PPCs, 1− 36 months after occurrence of shock 1, 2 and
3, for selected models
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model with the monthly auxiliary series as regressor and use this model to nowcast
the current month. The reason why DC is preferred in times of crisis, is because an
(S)ARIMA model of a series obtained by CL leads to larger dependencies on the his-
tory of the series. A simulation study shows that one year after a sudden shock, the
CL, Bridge method is again one of the best performing methods. In this paper, for two
reasons, only one auxiliary monthly series is used for both BM and nowcasting. The
first reason is that each auxiliary monthly series is based on turnover of companies
with similar economic activity (i.e. primary publication cells, PPCs). This implies
that an auxiliary series that measures the same phenomenon is potentially sufficient,
while additional auxiliary monthly series might introduce error. This may hold espe-
cially in a period of crisis, where the relation between the additional auxiliary series
and the target series might be disturbed leading to model misspecification and biased
nowcasts. The second reason is that in the production of timely monthly official fig-
ures there is very limited amount of time for model checking and evaluation. From
that point of view, relatively simple models that are easy to interpret are preferred
above complex models. In this paper twelve time series of so-called primary publica-
tion cells (PPCs) (e.g. ‘Restaurants’ or ‘Publishers’) are considered as test cases, and
nowcasts are computed for 44 months in normal times and 4 months in crisis times.
The performance of the different models is quite consistent over these test cases and
within periods. This might indicate that our results can be generalized to other appli-
cations but more empirical results to support our findings are of course desired. An
issue with the simulation in this study is to find a benchmark to evaluate the accuracy
of the proposed methods. In this study the monthly index series as obtained by BM
are used as the benchmark. It is not clear whether this choice favours some methods
above others. A simulation that does not favour or handicap particular methods re-
quires a setup where artificial populations are created. This indeed gives more insight
in the properties of the different procedures under different conditions. This is left as
further research. The index series which are used in this paper are based on turnover
sums, where the monthly auxiliary series are based on a selective subpopulation. It
is also possible to (partly) correct for this selectivity by weighting, using the available
background information about the involved enterprises. In this application, only lim-
ited information is available. When there is some information about the self-selection
process available, this could be used in the correction process as well. In this paper,
we investigated the index series that are published by Statistics Netherlands as short-
term statistics. Each index series is based on two turnover series. In a preliminary
analysis it is investigated whether the accuracy of the nowcasts could be improved
when these underlying turnover series are modelled instead of the index series. It is
found that modelling the index series is more promising. See Zult, Krieg, Schouten,
Ouwehand, and van den Brakel (2020) for more results and further details.
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5.5 Appendix

A special structural time series model is developed to handle the different frequen-
cies of the monthly and quarterly series. See Durbin and Koopman (2012, Ch. 6) for
a general introduction and the estimation procedure of structural time series models.
Whereas for the other methods the quarterly value is repeated three times in the quar-
terly series yQQ(t) = yQQ(t)+1 = yQQ(t)+2, for the STM the value of this series is missing in the

first and second month of each quarter yQQ(t) = yQQ(t)+1 = NA. STM can handle missings

without problems. The time series yt =
(
yQt ,xt

)⊤
is modelled as:

yt = Lt + St + et, (5.9)

with Lt = (lyt ,L
x
t )⊤ the trend component, St =

(
s
y
t ,S

x
t

)⊤
the seasonal component and

et =
(
e
y
t , e

x
t

)⊤
the noise component. These three components are worked out as follows.

For the trend, we consider 2 different models. The first STM model is shortly called
the local trend model with correlation. In this case, the trend of the quarterly series is
modelled as:

l
y
t =

(
L
y
t−2 +L

y
t−1 +L

y
t

)
/3, (5.10)

And the underlying trend L
y
t and the trend of the monthly series Lxt are modelled as

Lat = Lat−1 + ηa
t with a = {x,y},

E[ηa
t ] = 0, (5.11)

Cov(ηa
t ,η

a
t′ ) =

σ2
L,a if t = t′

0 if t , t′
and

Cov(ηy
t ,η

x
t′ ) =

ζ2
L if t = t′

0 if t , t′.

The second STM model is called the smooth trend model with correlation. The
trend of the quarterly series is again modelled with Eq. (5.10), but now, Lyt and Lxt are
modelled as

Lat = Lat−1 +Ra
t−1,

Ra
t = Ra

t−1 + ηa
t , with a = {x,y}, (5.12)
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The variance – covariance structure of ηa
t is as in Eq. (5.11). Remark: The trend of

the quarterly series is the mean of the trend of the monthly series in three consecutive
months, modelled with Eq. (5.10). This is only relevant for the third month of every
quarter, as for the other months the model computes a trend L

y
t and l

y
t for the first

and second month of each quarter. The seasonal component of the monthly series is
modelled with the well-known trigonometric seasonal model (for monthly figures).
See Durbin and Koopman (2012) for details. The details of the seasonal component of
the quarterly series are explained in the main paper. The noise component is modelled
with white noise. To consider that both series are based partly on the same enterprises,
two independent white noise variables are modelled:

E
[
ϵt,j

]
= 0,

Cov(ϵt,j ,ϵt′ ,j) =

σ2
ϵ,j if t = t′

0 if t , t′
with j = 1,2 (5.13)

Cov(ϵt,1,ϵt′ ,2) = 0.

Then, ext = ϵt,1 + ϵt,2, and

e
y
t =

ϵt−2,1+ϵt−1,1+ϵt,1
3 if t is the third month of the quarter

0 if t is the first or second month of the quarter

In the current presentation, the sum of two independent white noise processes is
used to model the measurement error in the monthly figures. The quarterly average
of one of them is shared by the quarterly series. In this way the model accounts for
the correlation in the measurement disturbance terms of the monthly and quarterly
series, since the monthly and quarterly declarants are both used when the quarterly
series is computed. Alternatively, it is also possible to add the two independent white
noise components to the quarterly series where one of them is shared by the monthly
series. Since the process of the time series components are defined with a monthly
frequency it is more straightforward to add the two white noise components to the
monthly series. The analysis is conducted with software developed in OxMetrics in
combination with the subroutines of SsfPack 3.0, see Doornik (2009) and Koopman,
Shephard, and Doornik (2008).
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Chapter 6

Nowcasting in triple-system
estimation

When samples that each cover part of a population for a certain reference
date become available slowly over time, an estimate of the population size can
be obtained when at least two samples are available. Ideally one uses all the
available samples, but if some samples become available much later one may
want to use the samples that are available earlier, to obtain a preliminary or
nowcast estimate. However, a limited number of samples may no longer lead to
asymptotically unbiased estimates, in particular in the case of two early avail-
able samples that suffer from pairwise dependence. In this paper we propose a
multiple system nowcasting model that deals with this issue by combining the
early available samples with samples from a previous reference date and the
expectation-maximisation algorithm. This leads to a nowcast estimate that is
asymptotically unbiased under more relaxed assumptions than the dual-system
estimator. The multiple system nowcasting model is applied to the problem of
estimating the number of homeless people in The Netherlands, which leads to
reasonably accurate nowcast estimates.

This chapter is in a revision process (status: accepted under minor revision) for publication. A
preliminary version is available at arXiv, https://arxiv.org/abs/2406.17637, (Zult, van der Heijden,
& Bakker, 2024). Author contributions: DZ and PvdH posed the problem and worked out the idea. DZ
did the analyses and wrote the text. BB and PvdH discussed and edited the text.
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6. Nowcasting in triple-system estimation

6.1 Introduction

A well-known problem in the production of statistics is that data may become avail-
able gradually, while a statistic for a certain reference date has to be produced before
all these data are available. In such cases, it is common practice to produce a pre-
liminary statistic that can also be referred to as a nowcast, based on the data that is
available at the time of publication, and update this statistic shortly after the delivery
date of the last sample. Discussions on this topic usually evolve around correcting
for response bias that may occur when the speed of response is related to the statistic
itself. For example, when companies with a quickly growing turnover also respond
quickly, a nowcast on turnover growth might be biased upwards if this relation is
ignored.

A statistic for which such a nowcasting method is not available, is a population
size estimate based on samples that each partly observe a population, and where one
or more complete samples are available with delay. This may occur when, for ex-
ample, samples are registers or surveys that are maintained or collected periodically
throughout a certain period. Then, some samples might be available early and oth-
ers later, although they refer to the same reference date. In such cases it is common
practice to simply wait until all samples have become available before estimation is
performed. This raises the question whether and under what conditions it is possible
to produce a preliminary population size estimate based on the set of samples that are
available earlier. The most simple case is when for the reference date one sample be-
comes available earlier and a second sample becomes available later. A slightly more
complex case is when for a reference date three samples become available sequentially
with some time in between, which is the main topic of this paper.

The models that are involved in the estimation of the size of a partly observed
population are known under different names such as capture-recapture, mark and re-
capture or multiple systems estimation (MSE). When the number of samples is two
or three, MSE is usually referred to as dual-system estimation (DSE) or triple-system
estimation (TSE), respectively. The most basic DSE model was proposed by Petersen
(1896), and later by Lincoln (1930). Under a set of assumptions discussed by Wolter
(1986), their DSE estimator provides an asymptotically unbiased population size esti-
mate. A DSE assumption that is often unlikely to hold, is the independence of the two
samples. This independence assumption can be relaxed when three or more samples
are available, and therefore, as discussed by Fienberg (1972), TSE is often recom-
mended.

The case considered in this paper is that a contingency table based on three sam-
ples for the previous reference date, and a contingency table based on one or two
samples for the current reference date is available. The goal is to obtain a maximum
likelihood (ML) population size estimate for the current reference date. The absence
of a second and third or only a third sample for the current reference date could be
considered a missing data problem. A standard method to deal with this issue is the
expectation–maximization (EM) algorithm (see e.g. Dempster et al., 1977). The EM
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algorithm method allows for statistical inference from incomplete data with ML. In
this paper we will discuss under which conditions the EM algorithm can be combined
with DSE and TSE to obtain an asymptotically unbiased preliminary population size
estimate, which we will refer to as nowcast (NC) estimate. This approach of combin-
ing the EM algorithm with MSE models based on incomplete data is not new. For
example, Zwane, van der Pal-de Bruin, and van der Heijden (2004) consider the case
that some samples may contain different but overlapping populations, and Zwane and
van der Heijden (2007) consider the case where some covariates are missing in some
samples. New in this study is that the method is applied to obtain nowcasts for which
both observations and estimates based on fully observed MSE data become available
later. This allows us to compare the nowcasting model estimates with actual observa-
tions and the estimate based on fully observed MSE data in a practical example.

Next, Section 6.2 discusses the DSE and TSE model, and how data for two periods
can be combined in one framework. This framework contains incomplete data, there-
fore Section 6.3 discusses how the EM algorithm can be used to obtain ML estimates
from this framework. This combination of DSE, TSE and the EM algorithm gives a
MSE nowcasting model. Finally, in Section 6.4 we will apply this model to obtain
nowcasts for the number of homeless people in The Netherlands, and compare these
nowcasts with alternative estimates such as the standard DSE estimate.

6.2 Theory and notation

This section discusses DSE and TSE notation and theory, and shows how DSE and TSE
models can be combined over two periods.

6.2.1 Dual-system estimation

Imagine a population with size N and a set of two samples A and B that each cover
part of this population. The goal is to use these samples to obtain a population size
estimate denoted as N̂ . When each unit in each sample can be uniquely identified,
then for each unit an inclusion pattern ab can be constructed, with a,b ∈ {1,0}, where
a = 1 stands for “included in sample A” and a = 0 for “not included in sample A”, and
the same with b for sample B. The units of each inclusion pattern can be counted
and denoted as nab, except when the inclusion pattern is 00, because these units are
unobserved. The sum of all observed units is denoted as n and so n = n11 + n10 +
n01. Finally, when we sum over a or b, we replace that subscript by a “+”. Thus, for
example, n1+ = n10 + n11 is equal to the size of source A. It is assumed that nab is a
realisation of a random variable with expectation mab and the aim of DSE is to obtain
m̂ab, an estimate of this expectation.

Under a set of assumptions discussed by for example Wolter (1986), the observed
counts n11, n10 and n01 can be used to estimate N . These assumptions can be sum-
marised as:
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1. The true population is equal for the samples A and B.

2. Records that correspond to the same unit in sample A and B can be perfectly
linked.

3. Inclusion probabilities are homogeneous in sample A or B (see e.g. Seber, 1982).

4. Sample A and B are independent.

Under assumption (1-4), an asymptotically unbiased DSE-estimator for m00 can be
written as

m̂DSE
00 =

n10n01

n11
, (6.1)

and consequently for N as N̂DSE = n+ m̂DSE
00 = n1+n+1

n11
.

Fienberg (1972) showed that the DSE estimator can also be derived from a log-
linear model for mab, and for our purpose it is important to show how this relates to
the independence assumption 4. A log-linear model for mab can be written as

logmab = λ+λA
a +λB

b +λAB
ab , (6.2)

with λ an intercept term, λA
a and λB

b are the respective inclusion parameters for sample
A and B that are identified by setting λA

0 = λB
0 = 0 and λAB

ab is a parameter for the in-
teraction between sample A and B. Because m00 is unobserved and the independence
assumption 4 implies that λAB

ab = 0, in practice Eq. (6.2) represents three equations
and three unknowns that lead to the DSE-estimator in Eq. (6.1). This also shows that
if λAB

ab , 0, then m̂DSE
00 is a biased estimate for m00. In the next section we will show

how TSE may solve this problem of bias due to pairwise dependence of samples.

6.2.2 Triple-system estimation

When instead of two samples, a population is partly observed by three samples A, B
and C, each unit has an inclusion pattern that, instead of ab, can be written as abc,
where c is defined in the same way as a and b. This means that instead of the four
inclusion patterns in DSE there are now eight TSE inclusion patterns 000, 100, 010,
001, 110, 101, 011 and 111, and Eq. (6.2) can be extended towards

logmabc = µ+µAa +µBb +µCc +µABab +µACac +µBCbc +µABCabc . (6.3)

Eq. (6.3) constitutes a system of eight linear equations and eight unknowns, but
because m000 is unknown, it cannot be solved. Therefore it is usually assumed that
µABCabc = 0, which is similar but more realistic than DSE assumption 4. This assumption
gives the so-called saturated TSE model

saturated: logmabc = µ+µAa +µBb +µCc +µABab +µACac +µBCbc , (6.4)
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that in contrast to DSE, also contains pairwise interaction parameters µABab , µACac and
µBCbc . This model can be further restricted by setting one or more pairwise interaction
terms to zero, which gives seven additional models, i.e.:

two-pair dependence (I): logmabc = µ+µAa +µBb +µCc +µACac +µBCbc , (6.5)

two-pair dependence (II): logmabc = µ+µAa +µBb +µCc +µABab +µBCbc , (6.6)

two-pair dependence (III): logmabc = µ+µAa +µBb +µCc +µABab +µACbc , (6.7)

one-pair dependence (I): logmabc = µ+µAa +µBb +µCc +µBCbc , (6.8)

one-pair dependence (II): logmabc = µ+µAa +µBb +µCc +µACac , (6.9)

one-pair dependence (III): logmabc = µ+µAa +µBb +µCc +µABab , (6.10)

independence: logmabc = µ+µAa +µBb +µCc . (6.11)

Making the distinction between these restricted models is important when TSE and
DSE over two periods is combined. This will be discussed in the next section. Models
with more than three samples can be developed along the same lines.

6.2.3 Combining samples over two periods.

We consider a population with size Nt and the samples At, Bt and Ct that each
cover parts of this population for reference date t. Also assume the delivery dates
t = t0, t1,a, t1,b, t1,c where at t0 the samples At0 , Bt0 and Ct0 for reference date t = t0 are
all available and at delivery dates t1,a, t1,b and t1,c the samples At1 , Bt1 and Ct1 for ref-
erence date t = t1 become available, one-by-one, in that order. This means that at both
t = t0 and t = t1,c three samples are available for their corresponding periods t0 and
t1. When we write abc, t as the inclusion pattern for reference date t, a table can be
constructed that shows which observed counts are available at which moment, as in
Table 6.1 below.

Table 6.1 shows that for t = t0 and t = t1,c all observed counts are available for
their corresponding reference dates, and so for each reference date a TSE-estimate for
m000,t, as discussed in Section 6.2.2, can be estimated. We write their corresponding
TSE models as Mt0(µt0) and Mt1,c(µt1,c) = Mt1(µt1) with µt as the vector of µt-parameters
at reference date t. At t = t1,a and t = t1,b this is not possible, because at those delivery
dates only one or two samples are available for reference date t1. Table 6.1 shows that
at those moments only aggregated observed counts are available. Then the question
becomes if and under which assumptions, the old samples At0 , Bt0 and Ct0 , together
with these aggregated observed counts, can be used to obtain an asymptotically unbi-
ased estimate for Nt1 . In general, for each observed count that corresponds to a refer-
ence date t, one additional parameter for that reference date can be estimated. This
reasoning allows us to construct MSE models for the case that samples correspond to
different reference dates.

At t = t1,a the additional observed count n1++,t1 becomes available, which simply is
the total sample size of At1 . This can be considered one observed count for reference
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Table 6.1: Combined table at t = t0, t1,a, t1,b and t1,c.

A B C t nabc,t0 nabc,t1,a nabc,t1,b nabc,t1,c

1 1 1 t0 n111,t0 n111,t0 n111,t0 n111,t0
1 1 0 t0 n110,t0 n110,t0 n110,t0 n110,t0
1 0 1 t0 n101,t0 n101,t0 n101,t0 n101,t0
1 0 0 t0 n100,t0 n100,t0 n100,t0 n100,t0
0 1 1 t0 n011,t0 n011,t0 n011,t0 n011,t0
0 1 0 t0 n010,t0 n010,t0 n010,t0 n010,t0
0 0 1 t0 n001,t0 n001,t0 n001,t0 n001,t0
0 0 0 t0 ? ? ? ?
1
1
1
1
0
0

1
1
0
0
1
1

1
0
1
0
1
0

t1
t1
t1
t1
t1
t1

?
?
?
?
?
?

n1++,t1

?
?

n11+,t1

n10+,t1

n01+,t1

n111,t1
n110,t1
n101,t1
n100,t1
n011,t1
n010,t1

0 0 1 t1 ? ? ? n001,t1
0 0 0 t1 ? ? ? ?

date t = t1 and therefore allows a model with one additional parameter for reference
date t = t1, i.e.

Mt1,a(µt1,a
) = logmabc,t = Mt0(µt0

) +µt1 , (6.12)

where Mt0(µt0
) is one of the models in Eq. (6.4 - 6.11) with t0 attached in each sub-

script of each µ-parameter. Note that the parameter µt1 is an additional constant that
is added to µt0 in case of reference date t1, so for m000,t1 , Eq. (6.12) reduces to the ex-
pression m000,t1 = exp

(
µt0 +µt1

)
. The remaining parameters in Mt0(µt0

) are assumed
to hold for both reference dates t0 and t1. The ML estimate for µt0 is assumed to be
asymptotically unbiased if model Mt0(µt0

) is true, but whether the ML estimate for
µt1 is also asymptotically unbiased depends on the remaining parameters in Mt0(µt0

).
If inclusion probabilities in and pairwise dependencies between sample At, Bt and Ct
are independent of t, the ML-estimators for the remaining parameters are asymptoti-
cally unbiased estimators for both reference dates, and then the ML-estimator for µt1
is also an asymptotically unbiased estimator. In that case the ML-estimator for m000,t1
and therefore Nt1 is an asymptotically unbiased estimator too.

At t = t1,b the additional sample Bt1 becomes available and so at t = t1,b two sam-
ples are available for reference date t = t1. Table 6.1 shows that this means that three
observed counts, with inclusion patterns abc = 11+,10+,01+, are available for this ref-
erence date. This implies that for reference date t = t1 a DSE-estimate can be obtained,
but as was discussed in Section 6.2.1, this estimate is biased if the independence as-
sumption is violated. Then the question becomes if the presence of the samples At0 ,
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Bt0 and Ct0 allows for a way in which the independence assumption can be relaxed.
Note that due to the three observed counts we can extend Mt1,a(µt1,a

) in Eq. (6.12) with
two additional parameters for t = t1, i.e.

Mt1,b(µt1,b
) = logmabc,t = Mt0(µt0

) +µt1 +µAa,t1 +µBb,t1 . (6.13)

This model gives the same expression exp
(
µt0 +µt1

)
for m000,t1 as M(t1,a), but the con-

ditions under which the ML-estimator for the parameter µt1 is an asymptotically unbi-
ased estimator are more relaxed. Note that the remaining parameters in Mt0(µt0

) that
are assumed to hold for both periods have reduced with µAa,t0 and µBb,t0 , which now,

due to the presence of µAa,t1 and µBb,t1 , correspond exclusively to inclusion probabilities
for reference date t0. Therefore, for model Mt1,b(µt1,b

) to hold, as compared to model
Mt1,a(µt1,a

), a reduced set of remaining parameters in Mt0(µt0
) should be independent

of t. This implies that in model Mt1,b(µt1,b
) the inclusion probabilities for sample At1

and Bt1 may differ from the inclusion probabilities for sample At0 and Bt0 .
Finally, it is instructive to compare Eq. (6.13) with the DSE Eq. (6.2). When mabc,t =

mab, µt1 = λ, µAa,t1 = λA
a , µBb,t1 = λB

b and Mt0(µt0
) = λAB

ab , the equations are equivalent.
This implies that for Mt1,b(µt1,b

) the DSE independence assumption 4. can be replaced
by the (more relaxed) assumption

4. The pairwise dependence parameter λAB
ab is independent of t.

In other words, the estimate for λAB
ab for the previous reference date can be used as

an estimate for the current reference date, because it is assumed to be stable between
both periods.

The estimation of the parameters in the models Mt1,a(µt1,a
) and Mt1,b(µt1,b

) is less
straightforward than the estimation of the parameters in Mt0(µt0

) and Mt1(µt1
), which

can be estimated directly with ML. How to deal with this problem is discussed in the
next section.

6.3 Combining DSE and TSE with the EM algorithm

Table 6.1 from the previous section poses two statistical estimation problems. On
top of the problem of the unobserved counts n000,t0 and n000,t1 , it also poses a so-
called mixture model problem (see e.g. Lindsay, 1995). This problem implies that
for (some) variables only an aggregate over different groups is observed, or one may
say that for some groups the data is incomplete. In this case, at t = t1,a, there is
the aggregated observed count n1++,t1 and at t = t1,b there are the three aggregated
observed counts

(
n11+,t1 ,n10+,t1 ,n01+,t1

)
. n1++,t1 is simply the size of sample At1 , and(

n11+,t1 ,n10+,t1 ,n01+,t1

)
are the aggregated observed counts over sample Ct1 of the units

included in sample At1 and/or Bt1 . A standard method to deal with incomplete data
is the EM algorithm. In this case it allows for the estimation of the underlying counts
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that together add up to the observed aggregated counts, such as the unobserved n111,t1
and n110,t1 at t = t1,b that add up to the observed n11+,t1 .

The EM algorithm was introduced by Dempster et al. (1977) as a tool to obtain
ML-estimates in case of incomplete data due to unobserved or latent variables. In
the problem discussed in this paper, the EM algorithm can be applied with model
Mt1,a(µt1,a

) or Mt1,b(µt1,b
) in Eq. (6.12) and (6.13). For this case, the outcome of the EM

algorithm at t = tt,a and t = tt,b is shown in Table 6.2.

Table 6.2: Table with completed data.

A B C t n̂abc,t1,a n̂abc,t1,b

1 1 1 t0 n111,t0 n111,t0
1 1 0 t0 n110,t0 n110,t0
1 0 1 t0 n101,t0 n101,t0
1 0 0 t0 n100,t0 n100,t0
0 1 1 t0 n011,t0 n011,t0
0 1 0 t0 n010,t0 n010,t0
0 0 1 t0 n001,t0 n001,t0
0 0 0 t0 ? ?
1 1 1 t1 n̂111,t1,a n̂111,t1,b
1 1 0 t1 n̂110,t1,a n̂110,t1,b
1 0 1 t1 n̂101,t1,a n̂101,t1,b
1 0 0 t1 n̂100,t1,a n̂100,t1,b
0 1 1 t1 ? n̂011,t1,b
0 1 0 t1 ? n̂010,t1,b
0 0 1 t1 ? ?
0 0 0 t1 ? ?

To illustrate how the Expectation step (E-step) of the EM algorithm yields com-
pleted data in the columns n̂abc,t1,a and n̂abc,t1,b in Table 6.2, we discuss this for n̂abc,t1,b .
The EM algorithm allows to split-up nab+,t1 into the completed data n̂ab1,t1,b and n̂ab0,t1,b
with n̂ab1,t1,b + n̂ab0,t1,b = nab+,t1 . The EM algorithm starts with an initialisation step

that creates an initial set of completed data by, for example, n̂(0)
ab1,t1,b

= nab+,t1/2 and

n̂
(0)
ab0,t1,b

= nab+,t1/2. Next, in the first maximisation step (M-step) these completed
data are assumed regular observations that, together with nabc,t0 , can be used to es-
timate the parameters of the model Mt1,b(µt1,b

) in Eq. (6.13), but here it is also pos-
sible to replace Mt0(µt0

) with a more restricted model. The model resulting from

this M-step gives, at iteration 0, the fitted values m̂
(0)
abc,t. Next, in the first expecta-

tion step (E-step) these fitted values are used to (again) split-up nab+,t1 , but now as
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n̂
(1)
ab1,t1,b

= nab+,t1(m̂(0)
ab1,t1,b

/m̂
(0)
ab+,t1,b

) and n̂
(1)
ab0,t1,b

= nab+,t1(m̂(0)
ab0,t1,b

/m̂
(0)
ab+,t1,b

), which gives a
new set of completed data that can be used to, again, estimate the model Mt1,b(µt1,b

)

in Eq. (6.13). This iterative procedure repeats itself i times until n̂(i)
abc,t1,b

converges.
The resulting set of stabilised completed data are the n̂abc,t1,b in Table 6.2, and they are
used to derive maximum likelihood estimates m̂abc,t1,b .

The last M-step provides fitted values m̂abc,t for each cell, including the cells with
inclusion patterns 001, t1 and 000, t1. We refer to these estimates as m̂NC

abc,t and sum-
ming up over them for t = t1,b gives a fitted value for Nt1 . We refer to this sum as the
nowcast estimate for Nt1 , i.e.

N̂NC
t1 =

∑
abc∈ABC

m̂NC
abc,t1,b

, (6.14)

with ABC the set of all inclusion patterns. In the next section we will use this estima-
tor to obtain nowcasts for the number of homeless people in The Netherlands.

6.4 Nowcasting the number of homeless people in The
Netherlands

In this section we investigate how the MSE nowcasting model performs by using a
dataset that is also used to estimate the number of homeless people in The Nether-
lands. The estimation of the number of homeless people in The Netherlands is dis-
cussed in detail in Coumans et al. (2017). The estimation procedure is based on three
samples that we refer to as sample Ay , By and Cy , where y indicates the year, and is
performed annually. The resulting TSE estimate for the 1st of January of each year
is based on a model selection procedure that leads to a TSE model that also includes
a set of covariates, namely sex, age, region of stay and region of birth. The samples
that are used become available over a year, where the first two samples Ay and By
are available early during the year and the third sample Cy is available somewhere in
the third or fourth quarter of the year. Data is available for each year over the period
2010− 2023, except for the COVID-19 year 2019. The sample size for each sample in
each year is presented in Table 6.3 below.

The scheme in which the samples become available implies that at y = yt1,b , for the
years 2011 − 2018 and 2021 − 2023, both a DSE estimate and a NC estimate can be
obtained. The fact that a NC estimate, as discussed in Section 6.2.3 and defined in Eq.
(6.14), requires samples from two consecutive years means that it cannot be calculated
for the years 2010, 2019 and 2020, because in those years data for the previous or next
year are missing.

To simplify the interpretability of the results, both the model selection procedure
is skipped by assuming a saturated model and the covariates are ignored by aggregat-
ing over them. Ignoring the covariates simplifies the data in Table 6.1 in Section 6.2.3.
Second, skipping the model selection procedure and simply assuming the saturated
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Table 6.3: Sample size for each year

Year Sample size Ay Sample size By Sample size Cy

2010 2916 1746 3494
2011 3058 1644 3812
2012 2594 1505 3459
2013 2703 1491 3876
2014 2380 1566 4267
2015 2232 1475 4669
2016 2631 1130 5220
2017 2502 1139 5611
2018 2456 927 5824
2019 NA NA NA
2020 1928 2501 5808
2021 1992 2827 6213
2022 2371 2263 5018
2023 2554 3017 4315

model in Eq. (6.4) for each reference date, allows for a more straightforward com-
parison of the resulting estimates, because they cannot differ due to different models
selected for different reference dates.

To further increase the generality of the analysis the order in which the samples
become available is varied. In reality sample Cy is available last, but for analytical pur-
poses this could as well be assumed to be sample Ay or By . The samples for reference
date of year y that are used in the calculation of an estimate are given as additional
information in the subscript. For example, a NC estimate based on sample Ay−1, By−1,
Cy−1, Ay and By but not Cy , is denoted as N̂NC

ab,y .

6.4.1 Results

This section presents the nowcasting model results for the homeless data. The results
of the nowcasting model are evaluated in three ways. First, the nowcasting estimates
for m001,y are compared with the actually observed n001,y . Second, the time series of
estimates for µABab,y , µACac,y and µBCbc,y are presented, which shows whether the nowcasting
model assumption of stability of pairwise-dependencies between two periods is rea-
sonable. Finally, the nowcasting model estimates for Ny are compared with the TSE
model estimates for Ny .

Figure 6.1 shows the observed (n100,y , n010,y and n001,y) and nowcasting model es-
timates for the expected number of homeless people (m̂NC

100,y , m̂
NC
010,y and m̂NC

001,y) in the
sample that is unavailable. Here the recent sample that is unavailable in the now-
casting model is indicated by the position of the “1” in the inclusion pattern in the
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subscript. For example, m̂NC
001,y is a nowcast that is based on sample Ay and By and not

Cy . These nowcasting model estimates are interesting because they can be directly
compared with observed values, which is rare in MSE models, because true popula-
tion sizes generally remain unknown. The solid lines represent a series of observed
counts and the dotted lines with corresponding colors represent the corresponding
nowcasting model estimates. Figure 6.1 shows that irrespective of the unavailable

Figure 6.1: Observations and nowcasts of the number of homeless people that are uniquely observed
in the missing sample over the periods 2010-2018 and 2020-2023.

sample, the nowcasting model estimates m̂NC
100,y , m̂NC

010,y and m̂NC
001,y follow a similar

trend as the observed counts n100, n010 and n001 that are available later, although for
some year/missing sample combinations the difference can be quite substantial, espe-
cially the difference between the green solid and green dotted line for the years 2021
and 2022 stands out.
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A similar figure can be constructed with a time series of TSE estimates (N̂TSE
y )

based on all samples and the DSE (N̂DSE
bc,y , N̂DSE

ac,y and N̂DSE
ab,y ) and NC (N̂NC

bc,y , N̂NC
ac,y and

N̂NC
ab,y) estimates based on early available samples. The samples that are used in the

estimation are indicated in the subscripts. For example, N̂DSE
ab, and N̂NC

ab, are a DSE
and NC estimate based on sample At1 and Bt1 , while Ct1 is missing. These series are
presented in Figure 6.2 below.

Figure 6.2: Estimates of the number of the total number of homeless people in The Netherlands over
the periods 2010− 2018 and 2020− 2023.

Figure 6.2 shows that for most years the nowcasting model estimates are much
closer to the TSE estimates than the DSE estimates, which suggest that in this case
the nowcasting model assumption of λAB

ab,(y−1) = λAB
ab,y is more reasonable than the DSE

assumption λAB
ab,(y−1) = 0. However, for some years the nowcasting model estimate can

be quite bad, such as N̂NC
ac,y in the years 2021 and 2022.

For many years it is questionable if the nowcasting model estimate is a better es-
timate than the TSE estimate of the previous year. In such cases a nowcast has no
clear value added. To look deeper into this issue, Table 6.4 presents the differences
between the TSE estimates and the lagged TSE estimates and nowcasting model esti-
mates. Table 6.4 shows that the proximity of the nowcasting model estimates and the
TSE estimate clearly differs for each sample delivery order. The best results are in the
last column N̂NC

ab,y − N̂
TSE
y , which has the lowest mean absolute difference (3.3), which
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Table 6.4: Difference per year (×1000) between the TSE estimate and different estimates for each year

Year N̂TSE
(y−1) − N̂

TSE
y N̂NC

bc,y − N̂
TSE
y N̂NC

ac,y − N̂TSE
y N̂NC

ab,y − N̂
TSE
y

2011 -6.9 -4.8 -9.9 -5.7
2012 -7.0 15.7 15.6 2.8
2013 4.3 -8.1 -10.7 -2.8
2014 1.8 1.6 -1.6 -8.9
2015 0.9 6.3 -0.2 3.1
2016 -0.8 -4.7 0.9 0.0
2017 6.0 3.5 -2.2 -1.4
2018 4.6 3.2 0.6 -4.7
2021 -8.3 4.6 30.2 7.2
2022 -6.0 -0.7 16.1 -0.6
2023 6.9 -1.8 -6.5 -0.9

Mean absolute difference 4.5 4.7 8.1 3.3

implies that in case of the homeless data the nowcasting model with sample Cy miss-
ing gives the best results. This is a bit surprising, because Table 6.3 shows that sample
Cy is also the largest sample, which means that its absence should have on average a
larger negative impact on the mean absolute difference than the absence of the other
sources. However, an explanation of this somewhat paradoxical result can be found
in Figure 6.3, which shows that the interaction coefficient µ̂ABab,y is more stable than

µ̂ACac,y and µ̂BCbc,y , and therefore in this example the nowcasting assumption of a stable

λAB
ab,y is best met when sample Cy is missing, which seems to outweigh the sample size

argument.
The first column N̂TSE

(y−1)−N̂
TSE
y presents the difference between the current TSE and

previous TSE estimate. The mean absolute difference in the last row (4.5) is smaller
than two out of three mean absolute differences of the nowcasting models. This can be
explained by the relative stability and low volatility of the TSE estimates time series.
In case of a less stable or more volatile series, the mean absolute difference will be
larger. This implies that in this example of the number of homeless people in The
Netherlands, under a different sample delivery order it might be preferable to simply
use the lagged time series, but in case of a less stable and more volatile series the
nowcasting model may be a better choice.

Finally, to see if the model assumption of stable pairwise-dependencies is rea-
sonable the TSE estimates µ̂ABab,y , µ̂ACac,y and µ̂BCbc,y over the periods 2011 − 2018 and
2021− 2023 are presented in Figure 6.3 below.

Figure 6.3 clearly shows three separate time series, which indicates that there is at
least some stability in µABab,y , µACac,y and µBCbc,y over time. However, in some years there can
be a sudden decrease or increase in the time series, for which we have no immediate
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6. Nowcasting in triple-system estimation

Figure 6.3: Coefficient estimates of µABab,y , µACac,y and µBCbc,y over the periods 2011− 2018 and 2021− 2023.

explanation. These large changes correspond to the larger nowcasting errors shown
in Table 6.4. Note that in the period 2021 − 2023 the estimate for µACac,y substantially
smaller than in its estimates in the period 2011− 2018. This can be explained by the
fact that sample By before 2019 is a different sample than sample By after 2019. Before
2019 sample By was a sample of homeless people who suffered from drug addictions
problems and after 2019 sample By was a sample of homeless people of ex-prisoners
who received reintegration support.

6.5 Discussion

In this paper we propose to combine dual- and triple-system estimation over two pe-
riods by means of the expectation-maximisation algorithm to obtain a preliminary
estimate, that we have coined a nowcast estimate. The advantage of this approach
is that it allows estimation with two samples, like in DSE, but the independence as-
sumption in DSE is replaced by a more relaxed assumption, which is that the pairwise-
dependence of the first two samples is equal to the pairwise-dependence of the first
two samples in the previous period. This assumption is more relaxed, because in DSE
the independence assumption also implies that the pairwise dependence is equal in
two periods, because in DSE the pairwise-dependence should be equal to zero in all
periods. This last part of the assumption is not necessary for our proposed nowcast-
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6.5. Discussion

ing model. To see if the nowcasting model can be reasonably applied it is therefore
advisable, when a sufficiently long time series is available, to check the stability of the
interaction parameter estimates.

We applied the TSE nowcasting model to obtain nowcast estimates for the number
of homeless people in The Netherlands. The model shows reasonable results in the
sense that the nowcast estimates of the expected number of homeless people unique to
the missing sample are quite accurate. Furthermore, the nowcasting model estimates
are much more similar to the final TSE estimates than the DSE estimates, which in-
dicates that in our example the assumption of stable pairwise-dependency is more
realistic than the assumption of pairwise-independence. The accuracy of the now-
casting model is also related to the size of the missing sample. If the largest sample
is missing, on average the mean absolute difference between the nowcast and TSE
estimate should increase. However, in our case a stable pairwise-dependency was
of greater importance than the sample size of the missing sample. Finally, although
the TSE nowcasting model provides reasonable results for many periods, we should
note that some nowcasting model estimates can be quite inaccurate, for example the
nowcasting model estimate N̂NC

ac,y in the years 2021 and 2022, as seen in Figure 6.2.
The reason for this inaccuracy was found in the instability of the estimated pairwise-
interaction between sample Ay and Cy for those years. Also, because in our example
the time series of TSE estimates is reasonably stable, the TSE nowcasting model does
not clearly outperform the lagged time series of TSE estimates. Therefore, in cases
where the time series of TSE estimates is less stable, the nowcasting model presented
in this paper may be more valuable.
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Böhning, D., Rocchetti, I., Maruotti, A., & Holling, H. (2020). Estimating the unde-
tected infections in the Covid-19 outbreak by harnessing capture–recapture meth-
ods. International Journal of Infectious Diseases, 97, 197–201.

Cadwell, B. L., Smith, P. J., & Baughman, A. L. (2005). Methods for capture-recapture
analysis when cases lack personal identifiers. Statistics in Medicine, 24(13), 2041–
2051.

126

https://doi.org/10.4324/9781315151939-18
https://ec.europa.eu/eurostat/documents/3859598/9441376/KS-06-18-355-EN.pdf/fce32fc9-966f-4c13-9d20-8ce6ccf079b6
https://ec.europa.eu/eurostat/documents/3859598/9441376/KS-06-18-355-EN.pdf/fce32fc9-966f-4c13-9d20-8ce6ccf079b6
https://ec.europa.eu/eurostat/documents/3859598/9441376/KS-06-18-355-EN.pdf/fce32fc9-966f-4c13-9d20-8ce6ccf079b6
https://www.ilo.org/media/319681/download
https://www.ilo.org/media/319681/download
https://www.imf.org/external/pubs/ft/qna/2000/textbook/index.htm
https://www.imf.org/external/pubs/ft/qna/2000/textbook/index.htm


REFERENCES

Cantwell, P. J. (2014). Dual-system estimation. In F. D. Bean & S. K. Brown (Eds.),
Encyclopedia of migration (pp. 1–5). Springer Netherlands.

Chao, A. (2001). An overview of closed capture–recapture models. Journal of Agri-
cultural, Biological, and Environmental Statistics, 6, 158–175.

Chao, A. (2015). Capture-recapture for human populations. In Wiley statsref: Statis-
tics reference online (pp. 1–16). John Wiley & Sons, Ltd.

Chao, A., Tsay, P. K., Lin, S. H., & Chao, D. Y. (2001). The applications of capture-
recapture models to epidemiological data. Statistics in Medicine, 20, 3123–3157.

Chapman, D. G. (1951). Some properties of the hypergeometric distribution with ap-
plications to zoological sample censuses. Berkeley, University of California Press. Re-
trieved from https://babel.hathitrust.org/cgi/pt?id=wu.89045844248&view=

1up&seq=3

Chapman, D. G. (1952). Inverse, multiple and sequential sample censuses. Biomet-
rics, 8(4), 286–306.

Chapman, D. G. (1954). The estimation of biological populations. The Annals
of Mathematical Statistics, 25(1), 1–15. Retrieved from https://www.jstor.org/

stable/2236510

Chatterjee, K., & Mukherjee, D. (2018). A new integrated likelihood for estimating
population size in dependent dual-record system. The Canadian Journal of Statistics,
46(4), 577–592.

Chen, Q., & Giles, D. (2011). Finite-sample properties of the maximum likelihood
estimator for the Poisson regression model with random covariates. Communications
in Statistics—Theory and Methods, 40, 1000–1014.

Chen, Z., & Kuo, L. (2001). A note on the estimation of the multinomial logit model
with random effects. The American Statistician, 55(2), 89–95. Retrieved from http://

www.jstor.org/stable/2685993

Chow, G., & Lin, A. (1971). Best linear unbiased interpolation, distribution, and
extrapolation of time series by related series. The Review of Economics and Statistics,
53(4), 372–375.

Cochran, W. G. (1978). Laplace’s ratio estimator. In H. DAVID (Ed.), Contributions
to survey sampling and applied statistics (pp. 3–10). Academic Press.

Cordeiro, G. M., & McCullagh, P. (1991). Bias correction in generalized linear mod-
els. Journal of the Royal Statistical Society. Series B (Methodological), 53(3), 629–643.
Retrieved from https://www.jstor.org/stable/2345592

127

https://babel.hathitrust.org/cgi/pt?id=wu.89045844248&view=1up&seq=3
https://babel.hathitrust.org/cgi/pt?id=wu.89045844248&view=1up&seq=3
https://www.jstor.org/stable/2236510
https://www.jstor.org/stable/2236510
http://www.jstor.org/stable/2685993
http://www.jstor.org/stable/2685993
https://www.jstor.org/stable/2345592


REFERENCES

Cormack, R. M. (1989). Log-linear models for capture-recapture. Biometrics, 45(2),
395–413.

Cormack, R. M., & Jupp, P. E. (1991). Inference for Poisson and multinomial models
for capture-recapture experiments. Biometrica, 78(4), 911–916.

Coumans, M. A., Cruyff, M., van der Heijden, P. G. M., Wolf, J., & Schmeets, H.
(2017). Estimating homelessness in The Netherlands using a capture-recapture ap-
proach. Social Indicators Research, 130(1), 89–212.

Cramer, H. (1922). Mathematical methods of statistics. Princeton University
Press, London. Retrieved from https://archive.org/details/in.ernet.dli

.2015.149716/page/n515/mode/2up

Daalmans, J. A. (2018). Special issue article: Benchmarking, temporal disaggrega-
tion, and reconciliation of systems of time series. Statistica Neerlandica, 72(4), 406–
420.

Dagum, E. B., & Cholette, P. A. (1975). Benchmarking, temporal distribution, and
reconciliation methods for time series. Part of the book series: Lecture Notes in Statistics.
(Vol. 186). Springer Science & Business Media.

Darroch, J. N. (1958). The multiple-recapture census: I. Estimation of a closed
population. Biometrika, 45(3/4), 343–359.

Darroch, J. N., Fienberg, S. E., Glonek, G. F. V., & Junker, B. W. (1993). A three-
sample multiple-recapture approach to census population estimation with hetero-
geneous catchability. Journal of the American Statistical Association, 88(423), 1137–
1148.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1), 1–38. Retrieved 2024-03-21, from http://www.jstor.org/

stable/2984875

Denton, F. T. (1971). Adjustment of monthly or quarterly series to annual totals:
An approach based on quadratic minimization. Journal of the American Statistical
Association, 66(333), 99–102.

de Wolf, P., van der Laan, J., & Zult, D. B. (2019). Connecting correction methods
for linkage error in capture-recapture. Journal of Official Statistics, 35(3), 577–597.
Retrieved from https://doi.org/10.2478/jos-2019-0024

Di Consiglio, L., & Tuoto, T. (2015). Coverage evaluation on probabilistically linked
data. Journal of Official Statistics, 31(3), 415–429.

128

https://archive.org/details/in.ernet.dli.2015.149716/page/n515/mode/2up
https://archive.org/details/in.ernet.dli.2015.149716/page/n515/mode/2up
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
https://doi.org/10.2478/jos-2019-0024


REFERENCES

Di Consiglio, L., & Tuoto, T. (2018). Population size estimation and linkage errors:
the multiple lists case. Journal of Official Statistics, 34, 889–908.

Ding, Y., & Fienberg, S. E. (1994). Dual system estimation of census undercount in
the presence of matching error. Survey Methodology, 20(2), 149–158. Retrieved from
https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X199400214422

Doornik, J. A. (2009). An object-oriented matrix programming language Ox 6 [Com-
puter software manual]. London: Timberlake Consultants Press.

Doz, C., Giannone, D., & Reichlin, L. (2012). A quasi–maximum likelihood approach
for large, approximate dynamic factor models. Review of economics and statistics,
94(4), 1014–1024. Retrieved from http://www.jstor.org/stable/23355337

Durbin, J., & Koopman, S. J. (2012). Time series analysis by state space methods, second
edition.

Eurostat. (2008). Nace rev. 2, statistical classification of economic activites in the Eu-
ropean Community. Retrieved from https://ec.europa.eu/eurostat/documents/

3859598/5902521/KS-RA-07-015-EN.PDF

Eurostat. (2017). Handbook on rapid estimates, 2017 edition. Retrieved from
https://ec.europa.eu/eurostat/documents/3859598/8555708/KS-GQ-17-008

-EN-N.pdf/7f40c70d-0a44-4459-b5b3-72894e13ca6d?t=1513758176000

Eurostat. (2018). Ess guidelines on temporal disaggregation, benchmarking, and
reconciliation, 2018 edition. Retrieved from https://ec.europa.eu/eurostat/

documents/3859598/9441376/KS-06-18-355-EN.pdf/fce32fc9-966f-4c13-9d20

-8ce6ccf079b6

Evans, M. A., & Bonett, D. G. (1994). Bias reduction for multiple-recapture estima-
tors of closed population size. Biometrics, 50(2), 388–395.

Evans, M. A., Bonett, D. G., & McDonald, L. L. (1994). A general theory for modeling
capture-recapture data from a closed population. Biometrics, 50(2), 396–405.

Fellegi, I. P., & Sunter, A. B. (1969). A theory for record linkage. Journal of the
American Statistical Association, 64(328), 1183–1210.

Fernández, R. (1981). A methodological note on the estimation of time series. The
Review of Economics and Statistics, 63(3), 471–476.

Fienberg, S. E. (1972). The multiple recapture census for closed populations and
incomplete 2k contingency tables. Biometrika, 59(3), 591–603.

129

https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X199400214422
http://www.jstor.org/stable/23355337
https://ec.europa.eu/eurostat/documents/3859598/5902521/KS-RA-07-015-EN.PDF
https://ec.europa.eu/eurostat/documents/3859598/5902521/KS-RA-07-015-EN.PDF
https://ec.europa.eu/eurostat/documents/3859598/8555708/KS-GQ-17-008-EN-N.pdf/7f40c70d-0a44-4459-b5b3-72894e13ca6d?t=1513758176000
https://ec.europa.eu/eurostat/documents/3859598/8555708/KS-GQ-17-008-EN-N.pdf/7f40c70d-0a44-4459-b5b3-72894e13ca6d?t=1513758176000
https://ec.europa.eu/eurostat/documents/3859598/9441376/KS-06-18-355-EN.pdf/fce32fc9-966f-4c13-9d20-8ce6ccf079b6
https://ec.europa.eu/eurostat/documents/3859598/9441376/KS-06-18-355-EN.pdf/fce32fc9-966f-4c13-9d20-8ce6ccf079b6
https://ec.europa.eu/eurostat/documents/3859598/9441376/KS-06-18-355-EN.pdf/fce32fc9-966f-4c13-9d20-8ce6ccf079b6


REFERENCES

Fienberg, S. E. (1992). Bibliography on capture-recapture modelling with
application to census undercount adjustment. Survey Methodology, 18, 143–
154. Retrieved from https://www150.statcan.gc.ca/n1/pub/12-001-x/1992001/

article/14494-eng.pdf

Fienberg, S. E., Johnson, M. S., & Junker, B. W. (2002). Classical multilevel and
Bayesian approaches to population size estimation using multiple lists. Journal of the
Royal Statistical Society Series A: Statistics in Society, 162(3), 383–405.

Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80(1),
27–38.

Frome, E. L., Kutner, M. H., & Beauchamp, J. J. (1973). Regression analysis of
Poisson-distributed data. Journal of the American Statistical Association, 68(344), 935–
940.

Gerritse, S. C., Bakker, B. F. M., de Wolf, P., & van der Heijden, P. G. M.
(2016a). Under coverage of the population register in The Netherlands. Discus-
sion paper 2016-02 (Centraal Bureau voor de Statistiek, Den Haag/Heerlen). Re-
trieved from https://dspace.library.uu.nl/bitstream/handle/1874/356071/

register.pdf?sequence=1

Gerritse, S. C., Bakker, B. F. M., Zult, D. B., & van der Heijden, P. G. M.
(2016b). The effects of imperfect linkage and erroneous captures on the population
size estimator, chapter 3 of phd thesis (Doctoral dissertation). Retrieved from
https://www.cbs.nl/en-gb/background/2017/39/impact-of-linkage-errors

-and-erroneous-captures

Gerritse, S. C., van der Heijden, P. G. M., & Bakker, B. F. M. (2015). Sensitivity of
population size estimation for violating parametric assumptions in log-linear mod-
els. Journal of Official Statistics, 80(3), 357–379.

Ghysels, E., Kvedaras, V., & Zemlys, V. (2016). Mixed Frequency Data Sampling
regression models: The R package midasr. Journal of Statistical Software, 72(4), 1—
35.

Ghysels, E., Santa-Clara, P., & Valkanov, R. (2004). The MIDAS touch: Mixed data
sampling regression models. Retrieved from https://escholarship.org/uc/item/

9mf223rs

Ghysels, E., Sinko, A., & Valkanov, R. (2007). MIDAS regressions: Further results
and new directions. Econometric Reviews, 26(1), 53–90.

Giannone, D., Reichlin, L., & Small, D. (2008). Nowcasting: The real-time informa-
tional content of macroeconomic data. Journal of Monetary Economics, 55(4), 665–
676.

130

https://www150.statcan.gc.ca/n1/pub/12-001-x/1992001/article/14494-eng.pdf
https://www150.statcan.gc.ca/n1/pub/12-001-x/1992001/article/14494-eng.pdf
https://dspace.library.uu.nl/bitstream/handle/1874/356071/register.pdf?sequence=1
https://dspace.library.uu.nl/bitstream/handle/1874/356071/register.pdf?sequence=1
https://www.cbs.nl/en-gb/background/2017/39/impact-of-linkage-errors-and-erroneous-captures
https://www.cbs.nl/en-gb/background/2017/39/impact-of-linkage-errors-and-erroneous-captures
https://escholarship.org/uc/item/9mf223rs
https://escholarship.org/uc/item/9mf223rs


REFERENCES

Gill, G. V., Ismail, A. A., Beeching, N. J., Macfarlane, S. B., & Bellis, M. A. (2003). Hid-
den diabetes in the UK: use of capture–recapture methods to estimate total preva-
lence of diabetes mellitus in an urban population. Journal of the Royal Society of
Medicine, 96(7), 328—332.

Hald, A. H. (1952). Statistical theory with engineering applications. John Wiley & Sons,
Inc. Retrieved from https://archive.org/details/statisticaltheor0000ahal/

mode/2up?view=theater

Hald, A. H. (1975). A history of probability and statistics and their applications
before 1750. New York: Wiley. Retrieved from https://archive.org/details/

historyofprobabi0000hald

Hammond, C., van der Heijden, P. G. M., & Smith, P. A. (2024). Generating contin-
gency tables with fixed marginal probabilities and dependence structures described
by loglinear models. Journal of Statistical Computation and Simulation, 94(12), 2797–
2812.

Herzog, T. N., Scheuren, F. J., & Winkler, W. E. (2007). Data quality and record linkage
techniques (Second ed.). Springer. Retrieved from https://link.springer.com/

book/10.1007/0-387-69505-2

Hogan, H., Cantwell, P., Devine, J., Mule, V., & Velkoff, V. (2013). Quality and the
2010 census. Population Research and Policy Review, 32, 637-–662.

Hook, E. B., & Regal, R. R. (1995). Capture-Recapture Methods in Epidemiology:
Methods and Limitations. Epidemiologic Reviews, 17(2), 243–264.

Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The
forecast package for R. Journal of Statistical Software, 27(3), 1–22.

ILO. (2018, October). Guidelines concerning the measurement of forced
labour. Geneva, Zwitserland. Retrieved from https://www.ilo.org/media/

209456/download

International Working Group for Disease Monitoring and Forecasting. (1995a).
Capture-recapture and multiple-record systems estimation I: History and theoret-
ical development. American Journal of Epidemiology, 142(10), 1047–1058.

International Working Group for Disease Monitoring and Forecasting. (1995b).
Capture-recapture and multiple-record systems estimation II: Applications in hu-
man diseases. American Journal of Epidemiology, 142(10), 1059–1068.

Jaro, M. A. (1989). Advances in record-linkage methodology as applied to matching
the 1985 Census of Tampa, Florida. Journal of the American Statistical Association,
84(406), 414–420. Retrieved from http://www.jstor.org/stable/2289924

131

https://archive.org/details/statisticaltheor0000ahal/mode/2up?view=theater
https://archive.org/details/statisticaltheor0000ahal/mode/2up?view=theater
https://archive.org/details/historyofprobabi0000hald
https://archive.org/details/historyofprobabi0000hald
https://link.springer.com/book/10.1007/0-387-69505-2
https://link.springer.com/book/10.1007/0-387-69505-2
https://www.ilo.org/media/209456/download
https://www.ilo.org/media/209456/download
http://www.jstor.org/stable/2289924


REFERENCES

Jolly, G. M. (1965). Explicit estimates from capture-recapture data with both death
and immigration-stochastic model. Biometrika, 52(1/2), 225–247. Retrieved from
http://www.jstor.org/stable/2333826

Koopman, S. J., Shephard, N., & Doornik, J. A. (2008). Ssfpack 3.0: Statistical algo-
rithms for models in state space form. [Computer software manual]. London: Tim-
berlake Consultants Press.

Kosmidis, I. (2007). Bias reduction in exponential family nonlinear models (Doctoral
dissertation, The University of Warwick). Retrieved from https://www.ikosmidis

.com/files/ikosmidis thesis.pdf

Kosmidis, I. (2014). Bias in parametric estimation: reduction and useful side-effects.
WIREs Comput Stat, 6(3), 185–196.

Kosmidis, I., & Firth, D. (2011). Multinomial logit bias reduction via the Poisson log-
linear model. Biometrika, 98(3), 755–759. Retrieved from https://www.jstor.org/

stable/23076146

Kosmidis, I., & Firth, D. (2021). Jeffreys-prior penalty, finiteness and shrinkage in
binomial-response generalized linear models. Biometirka, 108, 71–82.

Kosmidis, I., & Kenne Pagui, E. C. (2023). brglm2: Bias reduction in generalized lin-
ear models [Computer software manual]. Retrieved from https://cran.r-project

.org/web/packages/brglm2/brglm2.pdf

Kosmidis, I., Kenne Pagui, E. C., & Sartori, N. (2020). Mean and median bias reduc-
tion in generalized linear models. Statistics and Computing, 30, 43-–59.

Lincoln, F. C. (1930). Calculating waterfowl abundance on the basis of banding returns
(Vol. 118). United States Department of Agriculture.

Lindsay, B. G. (1995). Mixture models: Theory, geometry and applications. NSF-
CBMS Regional Conference Series in Probability and Statistics, 5, i-iii+v-ix+1–163. Re-
trieved from http://www.jstor.org/stable/4153184

Litterman, R. B. (1983). A random walk, Markov model for the distribution of time
series. Journal of Business and Economic Statistics, 1(2), 169–173.

Long, J. S. (1997). Regression models for categorical and limited dependent variables
(Vol. 7). SAGE Publications, Inc. Retrieved from https://us.sagepub.com/en-us/

nam/regression-models-for-categorical-and-limited-dependent-variables/

book6071

Lum, K., Price, M. E., & Banks, D. (2013). Applications of multiple systems estima-
tion in human rights research. The American Statistician, 67(4), 191–200. Retrieved
from http://www.jstor.org/stable/24591478

132

http://www.jstor.org/stable/2333826
https://www.ikosmidis.com/files/ikosmidis_thesis.pdf
https://www.ikosmidis.com/files/ikosmidis_thesis.pdf
https://www.jstor.org/stable/23076146
https://www.jstor.org/stable/23076146
https://cran.r-project.org/web/packages/brglm2/brglm2.pdf
https://cran.r-project.org/web/packages/brglm2/brglm2.pdf
http://www.jstor.org/stable/4153184
https://us.sagepub.com/en-us/nam/regression-models-for-categorical-and-limited-dependent-variables/book6071
https://us.sagepub.com/en-us/nam/regression-models-for-categorical-and-limited-dependent-variables/book6071
https://us.sagepub.com/en-us/nam/regression-models-for-categorical-and-limited-dependent-variables/book6071
http://www.jstor.org/stable/24591478


REFERENCES

Manrique-Vallier, D., Price, M. E., & Gohdes, A. (2013). Multiple systems estimation
techniques for estimating casualties in armed conflicts. In Counting civilian casual-
ties: An introduction to recording and estimating nonmilitary deaths in conflict. Oxford
University Press.

McClintock, B. T., Conn, P. B., Alonso, R. S., & Crooks, K. R. (2013). Integrated
modeling of bilateral photo-identification data in mark–recapture analyses. Ecology,
94(7), 1464–1471.

McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (Second ed.). London:
Chapman and Hall. Retrieved from https://doi.org/10.1201/9780203753736

McLeod, P., Heasman, D., & Forbes, I. (2011). Simulated data for the on the job training,
ESSnet DI. Retrieved 2015, from https://ec.europa.eu/eurostat/cros/content/

job-training en

Menkens, G. E. J., & Anderson, S. H. (1988). Estimation of small-mammal population
size. Ecology, 69(6), 1952–1959.

Miller, D. M. (1984). Reducing transformation bias in curve fitting. The American
Statistician, 38(2), 124–126. Retrieved from https://doi.org/10.2307/2683247

Moore, E. H. (1920). On the reciprocal of the general algebraic matrix. Bulletin of the
American Mathematical Society., 26(9), 394–395. Retrieved from https://doi.org/

10.1090/S0002-9904-1920-03322-7

Muneza, A. B., Linden, D. W., Montgomery, R. A., Dickman, A. J., Gary, J. R., Mac-
donald, D. W., & Fennessy, J. T. (2017). Examining disease prevalence for species of
conservation concern using non-invasive spatial capture–recapture techniques. Jour-
nal of Applied Ecology, 54, 709—717.

Otis, D. L., Burnham, K. P., White, G. C., & Anderson, D. R. (1978). Statistical
inference from capture data on closed animal populations. Wildlife Monographs, 62,
3–135. Retrieved from https://www.jstor.org/stable/3830650

Penrose, R. (1955). A generalized inverse for matrices. Mathematical Proceedings of
the Cambridge Philosophical Society., 51(3), 406–413.

Petersen, C. G. J. (1896). The yearly immigration of young plaice into the Limfjord
from the German Sea. Report of the Danish Biological Station, 6, 5–84. Retrieved from
https://archive.org/details/reportofdanishbi06dans/page/n1/mode/2up

Plackett, R. L. (1981). The analysis of categorical data (Second ed.). New York: Macmil-
lan. Retrieved from https://catalogue.nla.gov.au/catalog/171489

R Core Team. (2022). R: A language and environment for statistical computing [Com-
puter software manual]. Vienna, Austria. Retrieved from https://www.R-project

.org/

133

https://doi.org/10.1201/9780203753736
https://ec.europa.eu/eurostat/cros/content/job-training_en
https://ec.europa.eu/eurostat/cros/content/job-training_en
https://doi.org/10.2307/2683247
https://doi.org/10.1090/S0002-9904-1920-03322-7
https://doi.org/10.1090/S0002-9904-1920-03322-7
https://www.jstor.org/stable/3830650
https://archive.org/details/reportofdanishbi06dans/page/n1/mode/2up
https://catalogue.nla.gov.au/catalog/171489
https://www.R-project.org/
https://www.R-project.org/


REFERENCES

Rainey, C., & McCaskey, K. (2021). Estimating logit models with small samples.
Political Science Research and Methods, 9(3), 549–564.

Rivest, L. (2022). Rcapture: Loglinear models for capture-recapture experiments
[Computer software manual]. Retrieved from https://cran.r-project.org/web/

packages/Rcapture/Rcapture.pdf

Rivest, L., & Lévesque, T. (2001). Improved log-linear model estimators of abun-
dance in capture-recapture experiments. The Canadian Journal of Statistics, 29(4),
555–572.

Sanathanan, L. (1972). Estimating the size of a multinomial population. The An-
nals of Mathematical Statistics, 130(1), 142–152. Retrieved from https://www.jstor

.org/stable/2239906

Sax, C., & Steiner, P. (2013). tempdisagg: Methods for temporal disaggregation
and interpolation of time series. Retrieved from https://cran.r-project.org/web/

packages/tempdisagg/tempdisagg.pdf

Schnabel, Z. E. (1938). The estimation of total fish population of a lake. The American
Mathematical Monthly., 45(6), 348–352.

Seber, G. A. F. (1965). A note on the multiple-recapture census. Biometrika, 52(1/2),
249–259. Retrieved from http://www.jstor.org/stable/2333827

Seber, G. A. F. (1982). The estimation of animal abundance and related parameters
(Second ed.). London: Griffin. Retrieved from https://archive.org/details/

estimationofanim0000sebe/page/n5/mode/2up

Sekar, C. C., & Deming, E. W. (1949). On a method of estimating birth and death
rates and the extent of registration. Journal of the American Statistical Association,
44(245), 101–115. Retrieved from http://www.jstor.org/stable/2280353

Silverman, B. W. (2020). Multiple-systems analysis for the quantification of modern
slavery: Classical and Bayesian approaches. Journal of the Royal Statistical Society
Series A: Statistics in Society, 183, 691-–736.

Silverman, B. W., Chan, L., & Vincent, K. (2023). Bootstrapping multiple systems
estimates to account for model selection. Statistics and Computing, 34(44), 156–177.

Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48(1), 1–48. Retrieved
from https://doi.org/10.2307/1912017

Sowden, B. R. (1972). On the first-order bias of parameter estimates in a quantal
response model under alternative estimation procedures. Biometrika, 59(3), 573–579.
Retrieved from http://www.jstor.org/stable/2334808

134

https://cran.r-project.org/web/packages/Rcapture/Rcapture.pdf
https://cran.r-project.org/web/packages/Rcapture/Rcapture.pdf
https://www.jstor.org/stable/2239906
https://www.jstor.org/stable/2239906
https://cran.r-project.org/web/packages/tempdisagg/tempdisagg.pdf
https://cran.r-project.org/web/packages/tempdisagg/tempdisagg.pdf
http://www.jstor.org/stable/2333827
https://archive.org/details/estimationofanim0000sebe/page/n5/mode/2up
https://archive.org/details/estimationofanim0000sebe/page/n5/mode/2up
http://www.jstor.org/stable/2280353
https://doi.org/10.2307/1912017
http://www.jstor.org/stable/2334808


REFERENCES

Statistic Netherlands. (2016). Usual residence population definition: Fea-
sibility study The Netherlands. Retrieved from https://www.cbs.nl/

nl-nl/onze-diensten/methoden/onderzoeksomschrijvingen/aanvullende

-onderzoeksomschrijvingen/usual-residence-population-definition

Stephan, F. F. (1945). The expected value and variance of the reciprocal and other
negative powers of a positive Bernoullian variate. The Annals of Mathematical Statis-
tics, Ann. Math. Statist., 16, 50-–61.

Stock, J. H., & Watson, M. W. (1980). Vector autoregressions. The journal of economic
perspectives, 15(4), 101–115.

Tilling, K. (2001). Capture-recapture methods—useful or misleading? International
Journal of Epidemiology, 30(1), 12–14.

Tilling, K., & Sterne, J. A. (1999). Capture-recapture models including covariate
effects. American journal of epidemiology, 149(4), 392–400.

UNODC. (2022). Monitoring human trafficking prevalence through multiple sys-
tems estimation. Retrieved from https://www.unodc.org/documents/data-and

-analysis/tip/2022/MSE TIP UNODC ENG.pdf

van der Heijden, P. G. M., Cruyff, M., Smith, P. A., Bycroft, C., Graham, P., &
Matheson-Dunning, N. (2021). Multiple system estimation using covariates having
missing values and measurement error: Estimating the size of the Māori population
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