
Discussion Paper

Using cell phones to compute dynamic
population densities safely: a theoretical
exploration

Leon Willenborg

22 February 2025



1 Introduction

The aim of the present paper1) is to show how cell phone data can be used to compute
information about dynamic population densities, that is densities that change over time because
people move. These densities are to be contrasted with densities on the basis of the places of
residence of persons, home addresses so to speak. These are more static, as they do not change
during a day. They are also more exclusive, as they do not include the persons who do not live at
a particular location, but who just happen to be there, temporarily, for instance to shop, for
work, to attend a school, or just passing through to another destination, etc.

The densities derived from cell phone data in principle register anyone that is actually at a
particular location at a certain moment, under certain conditions: this person should carry a cell
phone, have a subscription with a telecom provider2), and is actively using the cell phone (i.e.
making a phone call, texting, apping (using WhatsApp, Signal, etc.), searching the internet, etc.).
So this is quite different from the situation of a person at that location, irrespective of being
actively using their cell phone. The question this raises is: how well do such cell phone data
produce good proxies of dynamic population densities? To answer this question it would be
necessary to consider other sources of personal location data that could be used for estimating
dynamic population densities. But such data are likely to come with their own problems when
used for this purpose.

This use of telecom data is not new. What might be new is that in the data used by the statistical
office all cell phones were anonymous and the data were aggregated. So no cell phone can be
tracked. Compare this to e.g. [2] or [5], where individual cell phones are followed over an
extended period of time. This required the use of cell phones id’s. In contrast, in the model
developed in the present paper certain link data are used by the statistical office. These data are
prepared by the telecom provider. The link data provide statistical information about
(anonymous) cell phones whose presence is spreading over the cells in the network. From this
information one can derive the spreading at municipality level. First, population densities for
non‐overlapping time periods (‘hour blocks’) are computed. Then, by using the link data, the
dynamics of these densities is derived. The approach in the present paper is like studying traffic
in a street network based on the movements of anonymous vehicles, where at each junction only
the number of vehicles going left, right or straight ahead (etc.) is used. Vehicles are anonymous
and therefore they cannot be followed travelling through the network.3)

One of the reasons why cell phone data can be useful is that mobile phones are owned and used
by many people on a regular basis and incessantly by some. There are, however, groups in the
population that typically do not own a cell phone or regularly use one. Any time a cell phone is
used for a telephone call, a WhatsApp (or Signal, etc.) message, access to the internet, records
are generated by the telecom provider to mark and log this event. It is the basis information to

1) The author would like to express his thanks to several former CBS colleagues for their help with this paper: Lara Reuter
skillfully created all figures produced with ArcGIS. Sander Scholtus reviewed several drafts of the paper, which led to
significant improvements, both substantively and textually. Finally, Edwin de Jonge, Jan van der Laan and Matthias
Offermans provided some comments that helped sharpen certain points raised.

2) Which also happens to supply (intermediate) data to the statistical office.
3) Unless, of couse, there are very few vehicles in the network and far apart, that single vehicles can be followed even

if they are anonymous. This may be the case in certain parts of the network and at certain times. But such extremal
cases can be dealt with by applying standard statistical disclosure measures for tabular data, if necessary.
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bill their clients. But this information can also be used for statistical purposes, adopting certain
assumptions. What can be used for this purpose, is the fact that persons carry cell phones
around. If a cell phone is actively used at a certain moment in time we know (almost for sure)
that this must have been the result of the actions of a person, most likely the user of this cell
phone. Then we know that this person at this moment is at the same location as the cell phone,
which is near the cell (= antenna) which was then communicating with this cell phone. The
geographic locations of the cells are known. Therefore the average location of an active cell
phone in some hour block is then also known by the cells through which it was communicating.

The present paper does not treat the theory in the most abstract and general way, on purpose. So
the observation period is chosen to be a day. It is subdivided into 24 hour blocks. It is applied to
the home country of the author, namely The Netherlands rather than to some abstract country.
The idea is to transform certain communication information available on cells to geographical
densities, which in our case are defined on municipalities. This requires an intermediate step to
achieve. Without further information on the cells and their sensitivity properties it is natural to
apply an interpolation technique such as nearest neighbour interpolation which uses Voronoi
polygons associated with the cells. These Voronoi densities are then used to compute municipal
densities. Municipalities are taken as examples of geographical areas which are statistically
relevant, in contrast to the Voronoi polygons, which are only auxiliary constructs.

It should be stressed that the present paper is theoretical in nature, focussing on ideas rather
than on empirical work and computations. Because no telephone data were at the disposal of
the author, the examples to illustrate certain points are therefore based on fictional data. The
locations of cells, used in some examples, are publicly available.

The model used in this paper, though basic, is sufficient to illustrate the essential points of the
approach. It is fairly easy to produce variants of the basic model that add realism to it. In such
variants one can distinguish cells on the basis of their directional sensitivity (e.g. omnidirectional
or unidirectional). And a sensitivity area can be used for each cell that matches its direct
environment, which may be affected by the presence of objects such as large buildings, trees,
lakes, etc. in its vicinity. This is very specific technical information, which was also not available to
the author. In order to avoid describing a rather abstract model with unspecified sensitivity areas
per cell, without the possibility of providing some concrete examples to illustrate certain points,
the author has chosen to focus attention on a more unsophisticated model to bring certain
points across. This seems to be a natural starting point, especially because more realistic features
can easily and naturally be introduced to the model subsequently. This topic is briefly discussed
in the final appendix of the paper, i.e. Appendix F. But let us first give an overview of what else
can be found in the paper.

Section 2 reflects on the very method that is used to estimate dynamic population densities. The
method uses active anonymous cell phone data. If a cell phone is active it can be linked to one or
more cells during a session, irrespective of whether it is moving or not. This implies that an
active cell phone can be linked to the locations of these cells. The fact that cell phone data are
anonymous (for the statistical office) means that cell phones cannot be traced over time.
Nontraceability of cell phones (and hence their users) implies that the data used by the statistical
office are safe, in the sense that they cannot be linked to individuals. The precision of locating
cell phones does not exceed the precision of the locations of the cells. Cell phone users are
autonomous in deciding to switch on or off their cell phone. Or they may leave or enter the
country at any time they want. This makes the population of cell phones an open one. These are
some properties that the data possess that we want to use to produce dynamic densities of
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persons in the country. There are several more properties of importance or interest. These are
discussed in this section, possibilities as well as limitations. The cell density is the basis for all
other densities we consider in the present paper: geometric cell densities, Voronoi densities and
municipal densities.

In Section 3 there is a discussion about the source data that is used, the output that a statistical
office wants to produce from this and the data used are provided by a telecom company. These
data are sensitive and cannot be provided directly to the statistical office. Therefore the telecom
provider preprocesses the source data in order to produce intermediate data, which are safe
enough4) and which can be delivered to the statistical office for further statistical use.

In Section 4 cell densities are considered. They are derived from the time being active by cell
phones. This produces, for each hour block and per cell, a mass (‘total presence’). Because a cell
phone can move and because communicating cells may switch even for a stationary cell phone,
the presence of a cell phone is typically distributed over several nearby cells (involved in
communicating with cell phones) during an hour block. This ‘distributed presence’ is, technically,
not a problem. By adding all these presences for each cell per hour block we obtain a total
presence. We shall ultimately not be interested in these absolute presences but in relative ones,
that is, their density. This quantity is only auxiliary and serves to compute municipal densities
and other similar statistically meaningful geographical densities.

Section 5 is the first step to use the cell densities to obtain geographical densities. In this first
step geographical cell densities are derived. A formula is presented that describes this
conversion. Section 6 is about special densities that can be derived from the cell densities,
namely the Voronoi densities. It also discusses the density mass that can be based on it, which is
an important means to translate Voronoi densities to statistically meaningful geographical
densities such as municipal densities. The Voronoi densities can also be used directly to provide
heatmaps of densities. They should be smoothed first so that the contours of the Voronoi
polygons have been masked. Voronoi polygons and Voronoi densities are only semi‐finished
products, although important ones. They need to be further processed and polished to yield
useful finished products. This finishing is discussed in the remaining sections. Section 7 is about
the translation of Voronoi densities to municipal densities. This translation can be done in two
ways: in a numerical way in which a density value is computed for each municipality, or in a
graphical way in which the Voronoi densities are smoothed and presented as heatmaps. The
contours of the municipal boundaries are added as a visual aid. They are not part of the
computation, as they are in the numerical approach. They form a separate layer in the GIS
software, and their only purpose is to give visual assistence. So far the densities have been
considered separately from each other. However, a natural next step is to try and understand
their dynamics. This can be done on the basis of the movement of cell phones. But with
anonymous cell phones this is impossible. However, by letting the telecom provider produce
some extra information from the source data, this can be done safely. We start this part of the
paper by considering how cells are connected through moving cell phones.

In Section 8 it is shown how to define a digraph structure on top of the set of cells. An arc (𝑎, 𝑏)
indicates that a moving cell phone active in cell 𝑎 at some hour block ℎ can be active in cell 𝑏 at
hour blocks ℎ or ℎ + 1. So cell 𝑏 is within reach from cell 𝑎 within a limited amount of time (that
is, in less than 2 hours). The telecom provider can provide these arcs, without the necessity of

4) Certainly against spontaneous recognition, but likely (far) beyond that.
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sharing confidential data. They require that the location of cell phones in one hour block as well
as in the next hour block is known to produce the basic input. By letting the telecom provider
aggregate over the cell phones involved the link data can be derived: If there was at least one cell
phone that was active in cell 𝑎 in hour block ℎ and in cell 𝑏 in hour block ℎ + 1, (𝑎, 𝑏) is an arc.
Which cell phones led to this arc is unimportant, of course, and will not be revealed to the
statistical office. Important is that it is possible for a cell phone to be active in cell 𝑎 in hour block
ℎ and in cell 𝑏 in hour block ℎ + 1. So this is about a possibility, a potentiality. It is obvious that
these link data are safe. However, we need to go further if we want to understand how the
changes in population densities come about. As cell phones are anonymous we cannot trace any
cell phone. Although we have no complete paths of cell phones we do have information about
small parts of these paths, namely how ‘density mass’ flows among the cells, from each hour
block ℎ to its immediate successor hour block ℎ + 1 (all within the time window considered). The
cell flow information that we have is in the form of a sequence of Markov matrices. It is as if the
original paths of individuals are replaced by knowledge about the movements of anonymous
persons at each junction: it is only known which percentage turns right, or left or moves straight
ahead, for each pair of adjacent hour blocks. In fact this means that the original paths are
replaced by traffic information, in the form of a nonstationary Markov chain, which, as is
well‐known, is memoryless. This is the price to be paid to protect the privacy of cell users. This
cell density flow problem is studied in Section 9.

In section 10 we consider the geometric cell density flow. This is about the change of cell flow
information for the cell locations. From this the Voronoi density flow is derived as well as the
municipal density flow. Both of these flows are important end results. The geometric density
flow is a (crucial) intermediate result. The Voronoi density flow is discussed in Section 11. It is
shown how it can be derived from the cell density flow by a formula that neatly separates this
information from geometric information about the Voronoi polygons generated by the cell
locations.

In Section 12 we consider the equivalent of the cell link digraph, namely the municipal link
digraph. This digraph indicates how density mass flows between municipalities. Using an
example it is shown how an adjacency matrix for cell flow is used to compute a strength matrix
for clusters of cells (here on the basis of being located in the same municipality) as well as the
relative strength matrix. This is the Markov matrix derived from the strength matrix. These
matrices provide information about how strong municipalities are connected through travelling
cell phones. This connection is overall, not for specific hour block pairs. Section 13 is about the
municipal density flow. It is shown how densities for consecutive hour blocks are linked by
Markov matrices. Also considered is how Markov matrices for cell flow can be transformed into
Markov matrices for municipal flow. In Section 14 the density transformations that have been
derived in the present paper have been collected and presented in context. In Section 15 we
consider animated density flow, which is a way of showing graphically how densities change over
time. We consider Voronoi densities, unsmoothed or smoothed, with municipal contour lines5)

to visually aid the viewer, presented as heatmaps. The idea is to play these visualized densities in
the order of the hour blocks, as a film. It is then immediately clear how a density changes over
time.

Now, with all the output densities and their development over time being dealt with, we could

5) Of course, in a similar way other geographical partitions can be used, such as COROP areas, provinces and the like. The
contour lines ar not part of the computations for heatmaps and therefore can be freely chosen.
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stop. However, one step is added, namely one in which the flow in the cell network is analyzed.
Section 16 suggests how to do this, namely by using the Helmholtz decomposition. In this way
one can separate the flow among cells or municipalities into two components: one measuring
the throughflow, the other measuring local flow or circulation.

Section 17 contains a discussion of the main results and some topics that remain open for future
research. The main text is concluded with a list of references. A number of appendices complete
the paper.

2 Considerations, concepts and
caveats

That certain metadata generated by mobile phones is useful data to provide actual/dynamic
population densities is not immediately clear. In the present section we discuss several aspects
that are involved. And also the assumptions that we apply in order to resolve an issue.

2.1 Selective set of cell phone users

Not everyone uses a mobile phone. This in itself is not necessarily bad news, provided various
groups in the population are well (proportionally) represented. But, as a matter of fact, this is not
the case. Certain groups are under‐represented, such as the elderly or the very young6) and
hence others are over‐represented (the complementery age group). And possibly representation
may be an issue with other characteristics as well (such as income, nationality, race,etc.). So
adequate representation of the entire population by the group of cell phone owners is not
obvious, and, for certain subgroups, it is not even the case. But when would this be problematic?
The answer is not so easy to give. In case the mobility pattern of a group is clearly distinct from
that of the mainstream cell phone users, one would see differences in population densities, such
as is the case with young children, or with sick or very old people that are bedridden or bad on
their feet. And people with jobs probably have different mobility patterns compared to those
who are unemployed, who also may have less money to purchase cell phones.

2.2 Active cell phones

Even though people may carry a cell phone with them, if it is not used actively in a certain period
of time this cell phone does not generate any event record at the telecom provider’s system and
hence it is ‘invisible’, unnoticed. It is similar to the situation where the telephone would have
been switched off.

‘Actively used’ should not be construed literally, in the sense that a cell phone user should
actually be speaking to or typing at their cell phone. What the phrase means is that a cell phone

6) And very likely the illiterate and the low literates, and persons with certain physical handicaps which do not allow them
to operate a cell phone.
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was in contact with the network through a cell in the network. This means that messages sent
(calls, text messages) are taken into account, whereas messages received are excluded. In
Section 3.1 it is explained why this is the case. Also, only the cells used by the telecom provider
selected to deliver input data to the statistical office, are taken into account.

So a cell phone is not recorded when it switched off, was not active (for instance when the user
was sleeping), was outside the sensitivity area of any cell in the network used by the telecom
provider, for instance when being across the border. Also cell phones using WiFi, instead of a cell
in the network, to communicate with the internet, are excluded. This concerns a lot of cell phone
users, namely those staying at home or who are at their workplace. In cafés, in restaurants, in
shopping malls, etc. often WiFi connections are available, which also may be used frequently by
visitors. So it is clear that a significant number of cell phone users is not observed, and hence
their location is unknown. Possibly all this causes considerable bias in the data.

On the other hand, if a cell phone was used for navigation in a car, it could have been active for a
long time, and a large number of cells may be involved.

Details about the communication between users and cells are not always relevant for the
method used, as long as any active period of a cell phone can be linked to one or more cells. The
data that are used to measure the presence of persons in an area (near a cell) are in fact based
on the periods when users were actively using their cell phones, in the sense just described.

A legitimate question is how useful this information is as a proxy to ‘being there’. Clearly it is not
a good proxy in situations when a cell phone can (typically) not be used as something else
requires the user’s attention, like driving a vehicle without the possibility of using the cell phone
handsfree. And of course, when people sleep they cannot be actively using their cell phone.

One should realize that the method, strictly speaking, measures certain events involving cell
phones, which concerns users only indirectly. But what is registered are events triggered by users
of cell phones. Whether these are also the registered clients7) is not important, unless one would
use demographic characteristics of clients.8) Then, in some cases, there would be a mismatch
between those of the actual user of the cell phone and those of the registered client. But for our
application such a possible mismatch is irrelevant.

2.3 SIM cards, telephone subscribers, cell phones and their users

Strictly speaking it is not even the cell phones that are the sources of the events that are of
interest in this paper, but the SIM cards inside these phones. These SIM cards should correspond
to valid phone numbers to be usable. In many cases a cell phone only has a single SIM card
inside. But dual SIM card cell phones exist that can contain two SIM cards.9) Typically, persons
who have a private phone number as well as a business phone number would be users of dual
SIM card cell phones. So instead of using two single SIM card cell phones they use a single dual
SIM card cell phone.

7) Usually they probably are, but the clients may, for instance, also be parents paying for the subscriptions of their chil‐
dren.

8) Which we do not in the method proposed.
9) The use of two SIM cards for such cell phones is an option, not a necessity. With only one SIM card inside it is like a

cell phone that can only contain a single SIM card.
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It is important to reflect on the difference of a single SIM card cell phone and a dual SIM card cell
phone in the context of the present paper. It is impossible that a dual SIM card cell phone can be
active on both phone numbers at the same time. However, within one hour block such a phone
can use its two phone numbers. This implies that a such a phone is likely to be more active and
hence the probability that it counts in the statistics is larger. Therefore it is likely to have a bigger
presence (see Section 2.4). The use of a dual SIM card cell phone by a user is no different in our
application from two single SIM card cell phones carried around by another user.

To avoid these complications it is therefore assumed in the present paper that the number of
persons using dual SIM card cell phones10) is much smaller than the number of users with a
single SIM card cell phone and hence is negligible. Furthermore it is assumed that we can
associate each user with a single SIM card cell phone at any point in time. And furthermore that
each cell phone is used by a single person, and in particular, is not shared with any other person.
The telephone subscribers or the owners of cell phones are irrelevant in the present approach.
Important is that the telephone numbers (or the corresponding SIM cards) should be used to
count.11)

2.4 Presence of cell phones

In this section we deal with a variable called presence, which is used to indicate for a cell phone
id𝑖 how much time it communicated with a cell 𝑐 in hour block ℎ. From the presences of cell
phones at cell 𝑐 in hour block ℎ the total presence is computed. Total presences is the base
material for estimating dynamic population densities. The statistical office depends on the
telecom provider to prepare total presence. Presence of a cell phone is considered sensitive
intermediate data that should be available to the telecom provider only. The statistical office will
only receive this information in aggregated form, that is, as total presence per cell and per hour
block.

We consider two possible definitions of presence for cell phone id𝑖 in hour block ℎ that was
active at cell phone 𝑐 for some time:

– b‐presence, which indicates whether or not cell phone id𝑖 was active at cell 𝑐 in hour block ℎ.
– q‐presence, which indicates which fraction of hour block ℎ cell phone id𝑖 was active at cell 𝑐.

b‐presence is considered in Section 2.4.1 and q‐presence in Section 2.4.2. It should be noted that
q‐presence is at the the time of writing a quantity that is not (readily) available, as it is not
important for the billing of customers to record how much time cell phones have spent
communicating through particular cells; only the total time each cell phone used is what matters
here. But maybe in the future this information will be (readily) available. At the moment,
q‐presence can probably only be estimated reliably, using statistical information about the actual
switching behaviour of cells. However, even if q‐presence cannot be used at the moment,
b‐presence can be used; q‐presence remains a beckoning prospect. Because q‐presence is the
variable of choice rather than its surrogate, b‐presence, it will be used in the remainder of this
paper to quantify presence.

10) Or who carry (and use) two (or more) cell phones.
11) In case subscribers would be counted one runs into problems in case a person has two subscriptions, one for him or

herself and one for their child. For then there is a possibility that this person is bilocated (present at clearly different
locations) at the same or nearly the same time, which is nonsense and has to be avoided.
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2.4.1 b‑presence
In this section we assume that the variable ‘presence’ is a binary variable: a cell phone has either
been active at a particular cell in a certain hour block, or not. How long the cell phone was active
at a cell in that hour block is not known. Present at a cell or not is of importance, which is a
binary property. Hence binary presence or b‐presence. This in contrast to the concept that
measures the amount of presence, namely quantitative presence, or q‐presence. This is dealt
with in Section 2.4.2.

So for each cell phone id𝑖 it should be established in which hour blocks ℎ (in the observation
window) it was active. Then for each cell phone id𝑖 it should be established, for each of its
‘active’ hour blocks, at which cells 𝑐 it was active. From this information it can be derived for
each cell phone id𝑖 and each hour block ℎ (in the observation window) at how many cells it was
active. Also it should be derived from the telecom data (by the telecom provider) how much time
cell phone id𝑖 was active in each hour block ℎ, or rather, what fraction of ℎ. This is total time, not
the time per active cell.

So recapitulating we know, for cell phone id𝑖, the fraction of the time 𝑓𝑖,ℎ it was active in hour
block ℎ and also the number 𝑘𝑖,ℎ of cells that were used to communicate with the network.
Without any extra details about the communication we may assume that the time spent at each
active cell was equal, which is 1/𝑘𝑖,ℎ for each of the active cells involved. So an estimate of the
presence for each of these cells is 𝑓𝑖,ℎ/𝑘𝑖,ℎ. The total b‐presence 𝑝𝑏(𝑐, ℎ) of a cell 𝑐 in hour block
ℎ is now defined as the sum of the b‐presences of all the cell phones id𝑖 active in cell 𝑐 in hour
block ℎ, that is

𝑝𝑏(𝑐, ℎ) =
𝑖
𝑓𝑖,ℎ/𝑘𝑖,ℎ , (1)

where 𝑖 indexes the cell phones active in hour block ℎ at cell 𝑐.

2.4.2 q‑presence
If we were able to step up to q‐presence from b‐presence we would have the time 𝑡𝑖𝑐,ℎ spent by
cell phone id𝑖 at a cell 𝑐 in hour block ℎ, which in the case of b‐presence would have to be
estimated. We define the q‐presence of a cell phone id𝑖 active at cell 𝑐 in hour block ℎ as the
fraction of one hour that it was active, that is,

𝑝ℎ𝑐𝑖 = 𝑡𝑖𝑐ℎ/60. (2)

Obviously, 0 ≤ 𝑝ℎ𝑐𝑖 ≤ 1.12) We define the total q‐presence of a cell 𝑐 in hour block ℎ as the sum
of the q‐presences of all the cell phones active in cell 𝑐 in hour block ℎ:

𝑝𝑞(𝑐, ℎ) =
𝑖
𝑝ℎ𝑐𝑖 , (3)

12) We define 𝑝ℎ𝑐𝑖 = 0 for cell 𝑐 in hour block ℎ if cell 𝑐 was not active for id𝑖 in hour block ℎ.
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2.5 Open population of active cell phones

The fact that the persons using a cell phone can switch them on or off, or can come into the
country, or leave it whenever they want, creates a problem that can be described as: lack of mass
preservation. Mass (i.e. the number of active cell phones at a certain point in time) fluctuates
over time. It is not the case that cell phones (or their users) appear or disappear from the
universe, but not being recorded by a cell at one hour block does not preclude the possibility of
being recorded at the later time. Likewise, being active on the phone at one time does not
preclude inactivity at a later time.

Not only this randomly appearing or disappearing of cell phones is typical for cell phone data,
also the time being active on cell phones differs among persons and also may differ for the same
person over time. This implies that the total presence, summed over all cell phones, is likely to
fluctuate for the various hour blocks. There also is not necessarily preservation of q‐presence for
individual cell phone users over time, let alone for the population of cell phone users. This
quantity is likely to fluctuate.

For this reason we have chosen to look at population densities based on q‐presence, rather than
on total q‐presence. Densities have the advantage that they are normalized to 1, whereas total
q‐presence is not and hence fluctuates over time. The idea is that by using densities, the
problem with cell phones becoming active or inactive (at random moments) is (apparently)
sidestepped. If one would use total presence then one would have to model the appearance or
disappearance of cell phones per hour block and perhaps for (certain) cells as well. This can
undoubtedly be done, but it is more complicated than the approach we have opted for in this
paper. It is of interest to investigate which effect this moving in and out of the population has on
the cell density estimates. See Sections 4.2 and 9.3 for additional information on this topic.

2.6 Cells and Voronoi polygons

We can represent cells as points in a map. We want to derive map information from the
measurements of active cell phones in relation to cells. By applying a special interpolation
technique, called nearest‐neighbour interpolation (see Appendix B , Section B.1), we can achieve
this. This technique generates areas, called Voronoi polygons, around each cell, with constant
density values. These Voronoi polygons form a partition of the country 𝐿 (The Netherlands).13) A
Voronoi polygon linked to a cell 𝑐 consists of the points in the plane (or in 𝐿) that are closest to 𝑐.
These polygons are used to define densities, Voronoi densities, which are crucial for deriving
municipal densities and smoothed densities (by using natural neighbour interpolation; see
Section B.2 in Appendix B).

It is tempting to consider the Voronoi polygons as sensitivity areas of the corresponding cells. A
sensitivity area of a cell is an area in which the cell can pick up cell phones signals. But Voronoi
polygons are only sensitivity areas by crude approximation. The reason is that the sensitivity of
cells, which are in fact antennas, depend on a lot of parameters, relating directly to the cells or to
the environment in which they are positioned. Determining the sensitivity area is a complicated,
technical problem, one that we want to bypass in this paper. The important role of Voronoi

13) In the computational geometry literature this is often referred to as ‘Voronoi tessellation’. We shall not use this term
in the present paper.
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polygons is that they are used to translate cell density values to geometric densities. They are
used for smoothing.14)

Remark It is actually impossible to model the sensitivity areas without additional information
from the telecom provider about each of the cells. They are not all of the same type: some are
omnidirectional antennas, which are equally sensitive in all directions, whereas others are
unidirectional antennas, which are more sensitive in a particular direction. Furthermore, external
conditions are also important for the reception of signals, such as the environment where the
cells are located: the presence of high buidings, trees, lakes and other large bodies of water, etc.
Also, atmospheric conditions also determine the quality of the cell phone signals received by a
cell. And these are not constant but change over time. It is clear that modelling the reception
area of a cell in a realistic way is a complicated matter (requiring knowledge of antennas) and it
also requires a lot of additional information that cannot be expected to be available to the
statistical office. See for instance [2] or [5] for a bit more background to the technical aspects.
This sort of information is not of the kind that is typical for a statistical office. As a very crude
approximation of a sensitivity area of a cell we can take its Voronoi polygon. But we should keep
in mind that the real use of these polygons is a computational one, namely as a means to
transform densities of one kind to that of another kind. The Voronoi polygons form a neat
partition of the country, so they do not overlap. The sensitivity areas at best form a coverage of
the country, but are likely to overlap. So they do not form a neat partition of the country. For all
these reasons we leave out realistic sensitivity areas in the present paper and consider Voronoi
polygons instead. □

There is a problem when using a Voronoi partition generated by the cell locations: the cells at the
perifery of the country (‘boundary cells’). Without extra actions (i.e. clipping / truncating
considering boundary cells across the country border) they may be unbounded, so that they have
infinite size, and are hence useless. In Section 2.7 we look more closely at this issue.

2.7 Interior and boundary cells

If we consider the cell network in country 𝐿 and we only have information on these cells, we are
forced to distinguish between two types of cells based on their location: near the country border
or not. In the former case we are talking about boundary cells and in the latter case about interior
cells. The problem with boundary cells is that they are unbounded. In particular their area is not
defined (∞ in size), which is a complication as we use these areas as weights in calculations.

If information would be available, it would be possible to extend the collection of cells in the
network of country 𝐿 with extra cells: terrestrial cells near the borders with Belgium and
Germany and offshore cells, in the North Sea near the coast of 𝐿 or in large bodies of water such
as the IJsselmeer.15) Then the cells in 𝐿 would all be interior cells, so to speak, and hence they
would all be bounded. However, even then this would not solve all problems with boundary cells
(in 𝐿). We still need to know for these cells which part (in terms of area) of these polygons is in 𝐿

14) We assume that it is reasonable to distribute a cell density uniformly over the corresponding Voronoi polygon. How‐
ever with the appropriate cell information available we could apply nonuniform densities of the polygons. But we
do not have this information. Clearly using it would make computations, for instance for municipal densities, more
complicated.

15) The offshore cells and the terrestrial boundary cells just across the border in Germany or Belgium are to be treated
separately, as external boundary cells.

CBS | Discussion paper | 22 February 2025 11



(in case of terrestrial boundary cells near the German of Belgium border) or which part (in terms
of area) is covered by land, in case of coastal cells. We shall not anticipate the deliberations that
motivate the choices for truncated or complete Voronoi polygons. This is reserved for Section
6.5, which is entirely devoted to these matters.

The choice between truncated or the original untruncated Voronoi polygons is important for the
weights to be associated with a cell. These weights play a role when q‐presence is used to
compute municipal densities per hour block. See Section 7 for details.

2.8 Some information about the distribution of cells

We present some initial information about the cells in The Netherlands (in January 2023). There
were then a total of ±51300 cells. The minimum number of cells in a municipality was 9 (in
Rozendaal) and the maximum number was 2086 (in Amsterdam). The average number of cells
per municipality was ±150. In Figure 2.1 the distribution of the number of cells per municipality
is shown. The Pareto graphs provides information on the inequality of the contributions to the
distribution. About 90% is less than the average value.

Figure 2.1 Distribution of the number of cells per municipality (in January 2023)
and corresponding Pareto graph.

In Figure 2.2 the distribution of the number of inhabitants in a municipality per cell in that
municipality is presented. As the graph shows the highest and lowest fraction differ by a factor
around 8, with an average of about 400. This gives a crude idea how well inhabitants are served
by cells. Of course, the sensitivity areas of cells do not respect the boundaries of municipalities.
And cells are not only used by the inhabitants of the municipalities where they are located.

More information about the geographical distribution of cells (on land and in the waters near the
Dutch coast) can be found in the figures in section 6.4.

2.9 Restrictions on the use of anonymous cell phone data

We now want to compare the possibilities of anonymous, untracked cell phones (as in the
present paper) with the possibilities of anonymous, tracked cell phones (for some period of time)
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Figure 2.2 Distribution of the number of inhabitants of a municipality for each cell
located in this municipality (in January 2023).

as considered in [2] or [5].16)Anonymous means that no id’s (keys) of cell phones are used nor
surrogate keys, to allow tracking of otherwise unidentified cell phones. In particular we focus on
some limitations of the method used in the present paper compared to the approaches in [2] or
[5]. As remarked before, it should be borne in mind that the methods have in common that the
locations are those of the cells; there is no more detailed location information available in the
data.

In the latter case it is possible to determine the location (cell) where the cell phone has spent
most of its time during the tracking period. In that way one is able to have a good guess for some
users where their abode is (at the cell level). These users are local residents or tourists staying at
a hotel or guesthouse, provided they stay there long enough. In case of workers who work
regularly at a fixed location (say a factory or an office) one would perhaps also identify their
‘place of work’. This depends on the period when these persons are tracked and the length of the
tracking period. Persons who work mainly from home would be undistinguishable from persons
who are not working at all, because they are unemployed, pensioned or ill at home or in a
hospital, daycare, nursing home, etc. (during the observation period). Such results are beyond
the reach of the kind of data the present paper proposes to use. It is even impossible to measure
the presence well at what is the home locations for most people, namely where they sleep.
Sleeping implies nonactivity of users on their cell phones and hence that their presence is not
registered by any cell.

The view we get of the dynamics of the population by using the link data provided by the
telecom provider is that of a time dependent Markov chain. This means that there is no memory
in such a system. The current state summarizes past and present. In reality, people travelling is
typically not memoryless but purposeful. People tend to make trips with plans. They leave the
house in the morning and come back home in the evening. The same with tourists. Replacing all
these motivated and purposeful trips at the micro‐level by a purposeless drifting around
following the rules of a Markov chain helps to make the data safe without giving up the
possibility to study the movements of an anonymous collective of people. This is typical for most

16) In these papers the id’s of the cell phones are replaced by surrogate keys to allow tracking the phones. A surrogate key
has in common with a key that it uniquely links to individuals (in this case clients of the telecom company), however
without knowing who they actually are. It can be used to link information about the same individuals spread over
time. It is important that information about the same individuals can be combined, not who these individuals actually
are. The use of surrogate keys gives a degree of protection, but not necessarily against recognition of individuals on
the basis of unique routes at the level of cells.
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traffic studies. To study how crowded roads, etc. are at particular times, there is no need to use
details of the travellers, including the purposes of their trips, their destinations, where they
started their trips, where they live, etc.

3 Description of various data sets

Part of the data generated by the telecom system is used by providers to bill their subscribers for
using their cell phones. This billing information is also useful as input for statistical offices
wanting to estimate the dynamic population density over some period of time. In the present
section it is discussed how this basic information owned by telecom providers can be used safely,
that is without compromising the privacy of subscribers or customers. The telecom provider
should process the original data, which are not safe, to obtain intermediate data, which are safe,
that can be delivered to the statistical office.

The present section starts considering the source data, and some of its characteristics, in the light
of the proposed application. It also draws attention to properties of these data that are not ideal.
Also the intermediate data are discussed, in particular the intended application is in mind, as well
as safety issues.

3.1 Source data (telephone subscribers→ telecom provider)

We assume for simplicity that there is a single telecom company providing the data to the
statistical office for producing information on dynamic population densities. In practice there
may be several such companies. Each of them is supposed to produce the same kind of data as
described here. Differences being eliminated they may be considered as being provided by a
single (virtual) telecom provider. To produce such seamlessly integrated data may be less
straightforward than it looks on paper and it may be time consuming. However, we are not
interested in the details of such a process in the present paper.

In order to bill its clients the telecom provider collects information about their use of their cell
phones: to make phone calls, to send text messages, to browse the internet, to upload or
download data, etc. Not only the events are recorded but also the time a phone call lasted, how
much data was transferred and which cells were used when these events took place. This latter
piece of information is important for the charging of clients as they may pay a different tarriff
when being abroad compared to their home country. This information is used by the telecom
provider not only to bill the clients but also to verify to which extent they have used their
resources and to compute what resources are left for the rest of the month.

Remark This billable information is sufficient in case users search or browse the internet or send
a message to another cell phone user (via e‐mail, WhatsApp, Signal, etc.). There either is no
receiving cell phone involved (in case of searching or browsing) or there is, but receiving the
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message, takes a very short time and there is no subsequent action.17) It shows that there is an
asymmetry in handling messages between senders and receivers. It therefore seems
inappropriate to measure presence at the receiving end. Only in case the receiver replies to a
telephone call, this would seem appropriate. In case the receiver replies to a text message he or
she is an active user in the sense described above and presence can be measured. Therefore it
seems appropriate and not restrictive that only billable information is used. □

It should be noted that the client is not necessarily the user of the cell phone. Think of a parent
paying for the cell phone of their son or daughter. But for our purposes it is relevant that, with an
active cell phone, one person is linked and with different cell phones different persons. See
Section 2.3.

3.2 Basic data (telecom provider)

We assume the basic data file to consist of records with event information, where an event is as
discussed above. It is supposed to contain (at least) the following variables:

– user‐id (id of a client)
– event‐id (to combine records starting and ending the same event so the duration of the event

can be computed)
– start/stop (to indicate whether the event started or ended)
– cell‐id (for the cell (=telephone antenna) that was active when the event started or ended)
– timestamp (a detailed date and time indicator to mark the start or end of an event)

The records may contain more information, but this is what we need for our purposes. These
variables allow us to make the necessary selections, groupings and links that we need.

Because the source data are sensitive, the source data have to be processed by the telecom
provider who produces safe, intermediate data. These data will be delivered by telecom provider
to the statistical office, who wil use these data to compute the results they are interested in. The
kind of output the statistical office would like to make is described in Section 3.4. How the
telecom provider produces these intermediate data from the source data is discussed in Section
8.

3.3 Intermediate data (telecom provider→ statistical ofϐice)

Cell count data per hour block provide the basis for population densities per hour block. We
could leave it at that: a sequence of population densities. But then we would not understand
how the ‘population mass’ moves across the cell phones. As we use data of anonymous cell
phones we are not able to follow any cell phone over time. Between these extremes there is an
intermediate solution: link data that link cells, in the sense that the transition between cells is

17) An e‐mail, for instance, is received by a mail server and the person to whom it is addressed may not be immediately
informed when it is received and he or she may look at it (much) later. This is a case of asynchronous communication.
In case of a WhatsApp (or Signal, etc.) message there is a notification to the receiver, but, again, he or she may look it
up later. This shows that there is a big difference between sending a textmessage and receiving it as far as the activities
of sender and reciver. This is quite different with a telephone call, when both sides of the messaging are talking, when
a link is established. This is typical for synchronous communication.
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given, due to moving cell phones. These link data are to be provided by the telecom provider to
the statistical office so that it can do computations concerning the dynamics of the population
densities from one hour block to the next.

The intermediate data should be safe, in the sense that no information about specific persons
can be inferred from the data. This can be done by producing certain aggregates from the
individual cell phone data. These aggregates should be produced per hour block. For these
aggregates the ‘true identity’ of cell phones is not important. It is only important that they have
some kind of temporary id (that is kept within the premises of the telecom provider), so that can
be decided, per hour block which activity data are produced by the same phones. Information in
different hour blocks is treated independently of that of other hour blocks. In fact, the same cell
phones producing data in different pairs of hour blocks could have different temporary id’s, as
they are not linked across different hour blocks. These temporary id’s are only used by the
telecom provider when compiling the intermediate data as auxiliary variables. They do not
appear in the intermediate data as delivered to the statistical office.

The intermediate data is supposed to contain the following information:

– Information to derive cell densities. This information is total presence, which is derived from
all the active cell phones at a particular cell 𝑐 in a particular hour block ℎ.

– information linking cells in consecutive hour blocks through moving and active cell phones.
This information can be supposed to be given in the form of a set of (0, 1)‐matrices
(providing information about which cells are mutually connected in the sense just described)
and by a set of Markov matrices (indicating the probability of a cell phone being active at cell
𝑖 at hour block ℎ is also active at cell 𝑗 at hour block ℎ + 1.

3.4 Output data (statistical ofϐice→ general public)

Here we give an overview of the kind of output the statistical office intends to produce on the
basis of cell phone data. In later sections we go into the details of the work to be done, which is
partly done by the telecom provider and partly by the statistical office.

The reason for this division of work is that the original data are considered confidential and
therefore has to stay within the premises of the telecom company. By delivering certain
pre‐processed data the telecom provider can make sure that the data delivered to the statistical
office are safe on the one hand and flexible enough for the statistical office to produce
interesting results about the dynamic population densities. We call the data delivered by the
telecom provider intermediate data. More about these data can be found in Section 8.

The first thing the statistical office would want to publish is the densities per hour block. This
involves several issues. The main one is about estimating the population densities at the cell
level. The next one is to translate the results at the cell level to the municipality level. It involves
interpolation and smoothing of population densities, among other things. In Section 7 these
topics are studied in detail.

How the population densities change from hour block to hour block is the next topic considered.
See Section 14. This topic is focused at understanding how cell densities for subsequent hour
blocks change due to movements of cell phones. The direct way to study the dynamics of the
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densities is to consider the cells. We have to take into account that we are dealing with an open
population of cell phones: inactive cell phones can be activated, and activated ones can be
deactivated, at any moment. Likewise cell phones from abroad can enter the country, or leave it.
And, of course, new cell phones can be bought and used, while existing ones can be lost or
irrepairably damaged. Such abrupt changes are to be viewed as random events. But the study of
the change of densities for a statistically meaningful geographical partitioning (such as
municipalities) is also of interest. Both are considered in this section.

4 Cell densities

This section describes the cell count data that the telecom provider is supposed to derive from
the source data and deliver to the statistical office. The source data with data about the use of
the services provided by the telecom provider to its clients are aggregated in such a way that the
resulting data can be used by the statistical office to compute population densities per hour
block. The reason that the telecom provider should carry out this aggregation is the sensitivity of
the base data. The resulting aggregate data are safe and can therefore without any problem be
delivered to the statistical office.

If the time intervals were very small each cell phone would be allocated to one cell when active.
But we are dealing with time intervals of a length of one hour and moving, active cell phones can
be picked up by several cells in such a period.

Table 4.1 is a subtable of Table A.1, where the id’s of the cell phones have been removed as they
are not important when determining the total q‐presence of active cells in the respective hour
blocks. The record numbers of the original table have been retained for easy reference, although
they are not used here.

We can summarize Table 4.1 in Table 4.2, with the total presence per cell for each hour block.

As we have a total of seven cells in our toy example, we can compute the population density for
each hour block ℎ, ℎ + 1 and ℎ + 2 from Table 4.2. The results are presented in Table 4.3.

Results as in Table 4.3 are basic for the approach in this paper. They give densities over the
collection of cells per hour block. They will be used to compute densities for geographic areas
such as municipalities. First they will be used to compute Voronoi densities, which are based on
Voronoi partitions induced by the location of the cells (see Section 6). Then, in turn, these
Voronoi densities are used to compute population densities for standard geographical
subdivisions such as municipalities (see Section 7). This completes the static part of the density
problem.

4.1 Cell density deϐined

A formal definition of a cell density 𝑓ℎ𝑐 , where the subscript 𝑐 denotes that we are dealing with a
density on cells and ℎ denotes the hour block, is
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rec h bl cell q‐pr rec h bl cell q‐pr
1 h c1 0.67 21 h+1 c6 0.78
2 h c2 0.19 22 h+1 c6 0.15
3 h c2 0.08 23 h+1 c7 0.48
4 h c3 0.25 24 h+2 c2 0.38
5 h c3 0.33 25 h+2 c2 0.21
6 h c4 0.21 26 h+2 c3 0.19
7 h c4 0.14 27 h+2 c4 0.41
8 h c5 0.13 28 h+2 c5 0.14
9 h c6 0.21 29 h+2 c5 0.12
10 h c6 0.49 30 h+2 c7 0.13
11 h c6 0.16 31 h+2 c7 0.63
12 h c7 0.71 32 h+2 c1 0.26
13 h+1 c1 0.18 33 h+2 c1 0.47
14 h+1 c2 0.63 34 h+2 c2 0.19
15 h+1 c3 0.72 35 h+2 c3 0.22
16 h+1 c3 0.23 36 h+2 c4 0.23
17 h+1 c4 0.29 37 h+2 c5 0.11
18 h+1 c4 0.13 38 h+2 c6 0.16
19 h+1 c4 0.24 39 h+2 c7 0.15
20 h+1 c6 0.11

Table 4.1 Records of active cell phones (without id) at cells (cell) in hour blocks (h
bl) ℎ, ℎ + 1 and ℎ + 2 and q‑presence per cell phone (q‑pr).

cell ℎ ℎ + 1 ℎ + 2
c1 0.67 0.18 0.73
c2 0.27 0.63 0.78
c3 0.58 0.95 0.41
c4 0.35 0.66 0.64
c5 0.13 0 0.37
c6 0.86 1.04 0.16
c7 0.71 0.48 0.91

Table 4.2 Total q‑presence at each of the seven cells for the hour blocks ℎ, ℎ+1, ℎ+2.

𝑓ℎ𝑐 = 𝑝𝑞(𝑐, ℎ)
∑𝑐 𝑝𝑞(𝑐, ℎ)

, (4)

where 𝑝𝑞(𝑐, ℎ) is the q‐presence as defined in (3) and the sum in the denominator is over all the
active cells in hour block ℎ, that is, with 𝑝𝑞(𝑐, ℎ) > 0.18)

It should be stressed that at this stage the cells are without locations. They only have an identity
so that they can be individually distinguished. Let 𝒞 = {𝑐1, … , 𝑐𝑛} denote the set of 𝑛 cells. We
now define

𝑓ℎ𝑐 ∶ 𝒞 → ℝ\ℝ−, (5)

18) In case b‐presence is preferred one can replace 𝑝𝑞(𝑐, ℎ) by 𝑝𝑏(𝑐, ℎ) as defined in (1) and one obtains a different
definition of a cell density.
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cell ℎ ℎ + 1 ℎ + 2
c1 0.188 0.046 0.183
c2 0.076 0.16 0.195
c3 0.162 0.241 0.103
c4 0.098 0.168 0.16
c5 0.036 0 0.093
c6 0.241 0.264 0.04
c7 0.199 0.122 0.228

Table 4.3 Population density for the hour blocks ℎ, ℎ + 1, ℎ + 2 at the cell level.

where 𝑓ℎ𝑐𝑖 is the cell density value for hour block ℎ at cell 𝑐𝑖, with

𝑛


𝑖=1

𝑓ℎ𝑐𝑖 = 1. (6)

It turns out to be handy at several occasions in the sequel to define the column vector with
density values for hour block ℎ = 1,… , 24:

𝑓ℎ𝐶 = ൫𝑓ℎ𝑐1 , … , 𝑓ℎ𝑐𝑛൯
′ . (7)

Define the all ones column vector 𝜄𝑛 of length 𝑛 as

𝜄𝑛 = (1,… , 1)′ ∈ ℝ𝑛 , (8)

then (6) can be written as

𝜄′𝑛𝑓ℎ𝐶 = 1 (9)

Quite a large part of the paper is about (5), where the actual location of the cells is not
important, only the (density) mass assigned to each cell. This concerns the cell densities per hour
block as well as the cell density flow.

4.2 Assigning cells to inactive cell phones

So far we treated q‐presence less than 1 as a fact we had to live with. This is not true, however.
As stated in Section 2.4.2 cell phones that are not active have not vanished from the earth; they
still are somewhere. If they would become active (within the range of the cell network) they
would be linked to a cell. On the basis of available data we make reasonable assumptions where
it may be. We distinguish two types of cells. Interior cells, which are too far removed from the
border for a cell phone to cross the border. The only option for cell phones near such cells is that
they can be switched on or off. Cell phones near the border have two options when they
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suddenly apppear or disappear: they were switched on/off, or they crossed the border. This
latter phenomenon can only occur in certain cells, namely those on the border (with Belgium,
Germany or in the North Sea, near the Dutch coast).

Of course, the statistical office does not know what exactly happened with cell phones near the
border on the basis of the data provided by the telecom provider, which are far more limited
than the original data collected by the telecom provider: were they switched off or did they cross
the border?

Suppose we19) want to impute incomplete observations, that is, for cell phones for which the
presence 𝑝 in an hour block ℎ is strictly less than 1. For the remaining of the presence 1 − 𝑝 we
want to impute cells where it would be located if the cell phone would be active. Suppose that in
the presence part of the cell phone it was associated with cells 𝑐1, … , 𝑐𝑘. Suppose that the
presence for these cells in hour block ℎ is 𝑝1, … , 𝑝𝑘. with 𝑝 = 𝑝1 +⋯+ 𝑝𝑘 < 1. We assume that
when no presence was recorded the cell phone was in the vicinity of 𝑐1, … , 𝑐𝑘 and with presence
𝑝′𝑖 = 𝑝𝑖/𝑝, for 𝑖 = 1,… , 𝑘, in which case 𝑝′ = 𝑝′1 +⋯+ 𝑝′𝑘 = 1.

Of course, this is a rather simplistic imputation model, but it is one that can be used as an
alternative for dealing with the missing data by ignoring them. So using this model we would
obtain two different estimates for total presence (see Section 4) and for Markov matrices that
describe transitions between cells for neighbouring hour blocks, like ℎ and ℎ + 1 (see Section 9).

5 Geographical cell densities

The geographical cell densities that we want to consider here, have two components: cell
locations 𝓁(𝑐𝑖) of cell 𝑐𝑖 and the cell density value 𝑓ℎ𝑐𝑖 at this cell in hour block ℎ. So we have the
cell density value of each cell in hour block ℎ defined on a location (on a map). This offers the
possibility for two things that are important in the sequel: we can smooth these densities and
get a Voronoi density on a map, where the cell locations are used as generators of the Voronoi
partition. The Voronoi density can be used to compute a municipal density. And it can be used to
smooth it geographically and compute a density that can be visualised. A geographical cell
density also allows us to group the cells on the basis of location in the same municipality. This in
turn allows us to compute the municipal density flow using the cell flow. Clearly geographical
densities play a key role in computing some important output data.

For presenting the output it is of importance to use the locations of the cells. So that is our next
step.

In the next step we assign a location (in ℝ2) to each cell, and to each location a density. This is a
prelude to a type of density in the plane that is central to this paper, namely a Voronoi density.
See Section 6. Voronoi densities are used for two purposes: to help define densities on
geographically and statistically meaningful partitions such as municipalities. And on the other
hand to produce smoothed densities that can be displayed on a monitor or printed on paper.

19) A desire of the statistical office to be carried out by the telecom provider
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So let

𝓁 ∶ 𝒞 → 𝐿 ⊆ ℝ2 (10)

be the function that assigns a location to each cell in 𝒞 to a spot in 𝐿. The function 𝓁 is injective,
as two different cells are located in two different positions.

We now define a density function in the plane where all the mass is concentrated in some points,
namely the locations of the cells, where at the location of cell 𝑐𝑖 there is a mass 𝑓ℎ𝑐𝑖 . We can
present the geographical cell (GC) density as

𝑓ℎ𝐺𝐶 =
𝑛


𝑖=1

𝑓ℎ𝑐𝑖 𝟙𝓁(𝑐𝑖), (11)

where 𝑥 ∈ ℝ2, 𝑓ℎ𝑐 as in (5) and 𝟙𝑧 is the indicator function for 𝑧 ∈ ℝ2.

𝟙𝑧(𝑥) = ቊ 1 , if 𝑥 = 𝑧,
0 , if 𝑥 ≠ 𝑧. (12)

We will rewrite (11) in a form that is more suitable for our application. To do this we first need to
introduce some notation. We first define the following column vector of indicator functions:

�⃗�𝐺𝐶 = ൫𝟙𝓁(𝑐1), … , 𝟙𝓁(𝑐𝑛)൯ . (13)

Now we can write (11) as

𝑓ℎ𝐺𝐶 = �⃗�𝐺𝐶 ⋅ 𝑓ℎ𝐶 = 𝒢𝑓ℎ𝐶 , (14)

where ‘cdot’ denotes the standard inner product in ℝ𝑛 and 𝑓ℎ𝐶 is as defined in (7). 𝒢 is a linear
transformation.

6 Voronoi densities and mass
In the present section we start with considering Voronoi partitions generated by (the locations
of) the cells. The Voronoi polygons act as intermediates between cell information and geographic
information.20) Cells on a map can be viewed as dots and Voronoi polygons are elementary

20) They can also be viewed as proxies of the sensitivity areas of the cells, if one wishes, although this simile should not
be taken too seriously.
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pieces of area, that form the linking pins to statistically more meaningful geographic areas such
as municipalities. Cells and maps match 1 ∶ 1. The cell (location) can be viewed as its centerpoint
of the corresponding Voronoi polygon. We can translate cell densities to Voronoi densities, which
in turn can be used to deduce municipal densities (see Section 7). These densities are defined
per hour block ℎ.

6.1 Voronoi partitions

Let 𝑝1, … , 𝑝𝑛 be a set of distinct points in the plane. We assume the Euclidean distance 𝑑2(⋅, ⋅) to
be used in ℝ2 which is derived from the norm ‖ ⋅ ‖:

𝑑2(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ = ඥ(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2. (15)

For each 𝑝𝑖 we define a region in the plane

𝑉(𝑝𝑖) = {𝑥 | ‖𝑝𝑖 − 𝑥‖ ≤ ‖𝑝𝑗 − 𝑥‖ for 𝑗 ≠ 𝑖 and 𝑖, 𝑗 ∈ 𝑁𝑛}, (16)

where 𝑁𝑛 = {1,… , 𝑛}. 𝑉(𝑝𝑖) is the Voronoi polygon associated with 𝑝𝑖, 𝑖 = 1,… , 𝑛. The 𝑝𝑖 are
the generators of this Voronoi partition. In this paper the generators are the cell locations. The
Voronoi partition is the result of the application of nearest neighbour interpolation to the set of
locations of cells. This method is discussed in Section B.1 of Appendix B.

Figure 6.1 shows an example of a Voronoi partitioning in the plane. For each Voronoi polygon its
generator as indicated as a dot. The Voronoi polygons in the center are presented in full. Those
at the boundary are truncated (clipped).

Note that the choice of the metric (𝑑2 in case of (16)) also determines the shape of the polygons
that are generated in the partitioning, although this is not always stressed, for obvious reasons:
the metric on the set considered (𝐿 in this paper) is often fixed, as it is in the present paper.

For more information on Voronoi partitions the interested reader is referred to [8], where they
are called Voronoi tessellations.

6.2 Voronoi densities

In the present section we show how a geographical cell density can be transformed into a density
defined on the corresponding Voronoi partitioning, with the set of cells as generators. This
transformation is obtained by the application of nearest‐neighbour interpolation (see Section B.1
in Appendix B).

Let 𝑓ℎ𝐺𝐶 as in (11) denote the geometric cell density for hour block ℎ. This density is 0 in most
places, except at the locations of the cells. For each cell 𝑐𝑖 the value is 𝑓ℎ𝑐𝑖 , which is the total
q‐presence measured at cell 𝑐𝑖 in hour block ℎ. If we apply nearest‐neighbour interpolation to
this function what happens is that the ‘density mass’ concentrated at each cell location 𝓁(𝑐) of
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Figure 6.1 An example of a Voronoi partition in the plane.

cell 𝑐 is uniformly spread over the area consisting of points that are closest to this cell 𝑐 rather
than to any of the other cells, that is, over the Voronoi polygon 𝑉(𝓁(𝑐)) of cell 𝑐. Let the area of
a Voronoi polygon 𝑉 be denoted by |𝑉|. What we actually want to do is to allocate the original
‘density mass’ associated with cell 𝑐 and concentrate it in location 𝓁(𝑐). This mass is supposed to
be evenly distributed over 𝑉(𝓁(𝑐)). The resulting Voronoi density for hour block ℎ, 𝑓ℎ𝑉 , can be
expressed as:

𝑓ℎ𝑉 =
𝑛


𝑖=1

𝑓ℎ𝑐𝑖
|𝑉𝑖|

𝟙𝑉𝑖 . (17)

where 𝑓ℎ𝑉 ∶ 𝐿 → [0, 1], with 𝐿 ⊂ ℝ2 representing The Netherlands on a map (in case of the
present paper), and where we have written 𝑉𝑖 instead of 𝑉(𝓁(𝑐𝑖)). Also 𝟙𝑉𝑖 is a generalization of
the indicator function 𝟙𝑧(𝑥) defined in (12), where

𝟙𝑉𝑖(𝑥) = ቊ 1 , if 𝑥 ∈ 𝑉𝑖 ,
0 , if 𝑥 ∉ 𝑉𝑖 . (18)

Now we want to rewrite (17) in a similar way as 𝑓ℎ𝐺𝐶 as defined in (14). We first define the
following indicator function for Voronoi polygons which is like (13):

v = ቆ 1
|𝑉1|

𝟙𝑉1 , ⋯ , 1
|𝑉𝑛|

𝟙𝑉𝑛ቇ . (19)

We now can express (17) as

CBS | Discussion paper | 22 February 2025 23



𝑓ℎ𝑉 = v ⋅ 𝑓ℎ𝐶 = 𝒱𝑓ℎ𝐶 , (20)

where 𝑓ℎ𝐶 is defined in (7), ‘⋅’ denotes the standard inner product in ℝ𝑛 and 𝒱 is a linear
transformation, independent of ℎ. The latter property is true as long as the network of cells does
not change. This is what we assume in the present paper.

6.3 Mass of a Voronoi polygon and subsets thereof

In addition to the Voronoi density 𝑓ℎ𝑉 for hour block ℎ we also need the total mass associated
with Voronoi polygons, or parts of it, in our applications. This includes the treatment of boundary
cells as well as the derivation of municipal densities. In case of a boundary cell �̄� with Voronoi
polygon 𝑉 ̄𝑐 we may have to consider the truncated Voronoi polygon 𝑉 ̄𝑐 ∩ 𝐿 instead of 𝑉 ̄𝑐. In case
of transforming Voronoi densities to municipal densities we also have to deal with truncated
Voronoi polygons. This is the case when a Voronoi polygon 𝑉 is incident with a municipality𝑀,
that is, when𝑀 ∩ 𝑉 ≠ ∅.

Let a (density) mass 𝑓ℎ𝑐 be associated with cell 𝑐 in hour block ℎ be given.21) Let 𝑉𝑐 denote the
Voronoi polygon associated with cell 𝑐. The density mass 𝑓ℎ𝑐 is assumed to be uniformly
distributed over 𝑉𝑐. This yields a density ̄𝑓ℎ𝑐 , which equals the density mass 𝑓ℎ𝑐 uniformly
distributed over 𝑉𝑐:

̄𝑓ℎ𝑐 = 𝑓ℎ𝑐
|𝑉𝑐|

= 𝑚ℎ(𝑉𝑐)
|𝑉𝑐|

, (21)

where |𝑉𝑐| denotes the area of 𝑉𝑐. 𝑚ℎ(𝑉𝑐) is an alternative expression for 𝑓ℎ𝑐 , which is more
convenient for areas that require more complicated set theoretic expressions for their
definitions, such as truncated Voronoi polygons.

This uniform density on Voronoi polygons, ̄𝑓ℎ𝑐 , is the vehicle we use in the present paper to
‘translate’ (density) mass associated with cells to geographically meaningful areas such as
municipalities. 22)If municipality𝑀 is incident with Voronoi polygon 𝑉𝑐 (that is,𝑀 ∩ 𝑉𝑐 ≠ ∅), the
mass that 𝑉𝑐 ‘donates’ to𝑀23) is ̄𝑓ℎ𝑐 |𝑀 ∩ 𝑉𝑐|. In this way all the Voronoi polygons incident with𝑀
donate to the mass of𝑀, which is the sum of those ‘donated’ masses.

In case �̄� is a terrestrial boundary cell we need to consider 𝑉 ̄𝑐 ∩ 𝐿 instead of 𝑉𝑐. The mass
associated with the truncated Voronoi polygon 𝑉 ̄𝑐 ∩ 𝐿 is

𝑚ℎ(𝑉 ̄𝑐 ∩ 𝐿) = ̄𝑓ℎ̄𝑐 |𝑉 ̄𝑐 ∩ 𝐿|, (22)

21) In fact we are dealing with densities defined on cells, i.e. cell densities. But the density value at a cell is also viewed
as a kind of mass. Hence the term ‘density mass’, to stress this.

22) The implicit assumption is that all cells are omnidirectional. Due to lack of information of the type of cell (omnidirec‐
tional, unidirectional) this is a reasonable assumption. However, should more information be available about cells,
this may result in a nonuniform distribution of cell density information on the corresponding Voronoi polygon.

23) Or alternatively expressed: the mass that𝑀 inherits from 𝑉𝑐.
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where the density ̄𝑓ℎ̄𝑐 is as defined in (21), for 𝑐 = �̄�. The fact that the density is assumed to be
uniformly distributed over a Voronoi polygon was used.

There are other instances in this paper where truncated Voronoi polygons are used, namely in
case Voronoi densities are transformed into municipal densities. In that case, for a municipality
𝑀, we would find for a truncated interior cell 𝑐 a similar expression as (22):

𝑚ℎ(𝑉𝑐 ∩𝑀) = ̄𝑓ℎ𝑐 |𝑉𝑐 ∩𝑀|, (23)

and for a boundary cell �̄� intersecting with𝑀:

𝑚ℎ(𝑉 ̄𝑐 ∩𝑀 ∩ 𝐿) = ̄𝑓ℎ̄𝑐 |𝑉 ̄𝑐 ∩𝑀 ∩ 𝐿|. (24)

With this preparation we can move on to the transformation of geographic cell densities to
Voronoi densities, which play a key role in the approach sketched in this paper.

6.4 Voronoi densities illuminated

In the present section some examples are shown of cells and the Voronoi partitioning they imply.
In particular, the Voronoi polygons are of interest. It is of importance to distinguish those in the
interior of the country from those at its border. The border polygons need special consideration
as we have seen before.

We start looking at the cells, the generators of the Voronoi partition. In Figure 6.2 a map is
shown with cells in The Netherlands.24) It gives a good idea how dense this network is. Note that
the cells are clustered in populous areas, i.e. where many people live, work, shop, go to school,
go out, etc, as well as along main roads. The density is highest in the Randstad, a conurbation in
the West of The Netherlands, containing major cities like Amsterdam, Rotterdam, The Hague and
Utrecht. Other areas with high densities include Arnhem and Nijmegen, Breda, Eindhoven and
the south of the Province Limburg. This latter area comprises of Maastricht (the western part)
and the conurbation Parkstad Limburg (the eastern part).

In Figure 6.3 the cell density for the municipalities are presented as a colour map. In a sense this
map is somewhat confusing as the size (area) of the municipalities is also of importance, not only
the cell density. This makes direct comparison of Figure 6.2 and Figure 6.3 somewhat
complicated. In particular in case of high densities and small areas or low densities and large
areas.

24) Information on cells in The Netherlands can be found at https://www.antennebureau.nl/plaatsing‐antennes/
locaties‐antennes‐in‐nederland and at https://www.gsmmasten.nl.
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Figure 6.2 Cells in the Netherlands, including the North Sea.

Figure 6.3 Heatmap of the number of cells per municipality in The Netherlands (in
January 2023).
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6.5 Boundary Voronoi polygons

In Section 6.1 we did not take into account that the Voronoi polygons we are actually interested
in are not defined in the plane, but in a country 𝐿 (viewed in a map), which restricts some of the
polygons in the partitioning. But there is more to consider. This is best illustrated using a
concrete example. So let 𝐿 be (a suitable map) of The Netherlands. In particular, we are
interested in its boundary. This can be divided into two parts:

1. terrestrial: borders with Belgium or with Germany.
2. coastal: bordering the North Sea.

The reason to distinguish between these parts is that in the first case there are likely cells
available across the border, which, when used, transform the Voronoi polygons of border cells
(on the Dutch side) to interior cells of ‘normal’ sizes. In the second case, there are offshore cells,
of which there are relatively few and they are far apart. Using these offshore cells would not
have the same effect of reducing the sizes of the Voronoi polygons concerned to ‘normal’ sizes.
They would still be of a size that is too large. This would imply that the mass associated with
these Voronoi polygons would be too big. See Section 6.5.3 for more discussion of this problem.

6.5.1 Characterizing boundary Voronoi polygons
In this section we want to concentrate on the difference between a Voronoi polygon of a
boundary cell and such a polygon on an interior cell. The difference is of importance for our
computations because in the latter case we can simply use the polygon itself in the calculations,
whereas in the former case extra effort is required.

The following is a criterion that can be used to distinguish between both types of Voronoi
polygons. Let 𝑉 be a Voronoi in a partition generated by cells. Let 𝐿 denote (a map of) the
country (in our case, The Netherlands). If 𝑉 ∩ 𝐿 = 𝑉 then 𝑉 is an interior polygon. If 𝑉 ∩ 𝐿 ⊂ 𝑉
then 𝑉 is a boundary polygon.25)

6.5.2 Terrestrial boundary Voronoi polygons
In this case there are cells across the border in Belgium or Germany. They should be taken into
account to make sure that the terrestrial border Voronoi polygons have ‘normal’ shapes and
sizes, that is, comparable to interior Voronoi polygons. That these Voronoi polygons are partly
covering Belgian or German soil is of no concern. In this case we make sure that the density
computed is of better quality than in case only the part of the Voronoi polygons in The
Netherlands (𝐿) is taken into account: the area of these truncated Voronoi polygons would then
be too small and hence also the mass to be associated with these geometric entities.

Figure 6.4 shows an area near the boundary of the Netherlands, in the south of the country, in
the province of Limburg. It is a rather narrow strip of land bordering on Belgium as well as on
Germany. Note the spiky Voronoi polygons corresponding to the boundary cells in that area. This
phenomenon is due to the fact that no boundary cells in Belgium or Germany were used to
‘tame’ them by truncation. If such cells are used we obtain ‘normal’ looking Voronoi polygons, as
Figure 6.5 shows. The boundary cells in The Netherlands are then also like interior cells. It should

25) It should be stressed that the symbol ⊂ denotes a proper subset, one that is strictly smaller. So equality is excluded.

CBS | Discussion paper | 22 February 2025 27



be stressed that the cells in Belgium or in Germany in Figure 6.5 are fictitious. They were used
because no information on the location of cells in Belgium or Germany was at our disposal.
These fictitious cells give an impression of their moderating influence on the shape of the spiky
boundaries of Voronoi polygons associated with cells located in The Netherlands.

Figure 6.4 Voronoi polygons of terrestrial boundary cells near the borders of The
Netherlands and its neighbours Belgium and Germany. No terrestrial boundary cells
in these countries were used, to show the spikiness and oversized shape of some
Voronoi polygons. The black line is the borderline of The Netherlands and these
countries. A colour coded Voronoi density is shown as an example.

Remark The white areas in Belgium and Germany in Figure 6.5 should indicate that no
communication information is available. Also no information on the location of cell phones in
these countries needs to be known, except for the boundary cells in these countries near the
Dutch border. These are only used to limit the size of the Voronoi boundary polygons at the
Dutch side of the respective borders. But as no communication information was available about
Belgian or German boundary cells, the corresponding Voronoi polygons were also left blank. The
parts of these polygons that cover The Netherlands are therefore also left blank. On the other
hand, if such information would have been available for these Belgian and German boundary
cells it would be used for polygons covering parts of The Netherlands. So either way, there is an
error. But as these concern relatively small pieces of territory, and also likely with little cell phone
activity, their effects on the overall results are likely to be negligible. However, further
investigation is needed to confirm (or reject) this assumption. □

6.5.3 Coastal boundary Voronoi polygons
For the offshore cells26) in the North sea near the coast (and removed from the Belgian and the
German border) the situation is different. These cells are fewer and more widely spaced than

26) There are two types of cells near the coast: those on land (terrestrial) and those in the sea. The latter ones we call
offshore cells, the former ones are called coastal (terrestrial) cells.
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Figure 6.5 Voronoi polygons of terrestrial boundary cells in The Netherlands near
the borders of Belgium and Germany with (ϐictitious) cells in these countries to show
the truncating effect of the Voronoi polygons of boundary cells in The Netherlands.
The black line indicates the border of The Netherlands and these neighbouring
countries. A colour coded Voronoi density is shown as an example.

those on land (for obvious reasons). See Figure 6.6. They are used for communication with
persons on board of ships (crews and passengers) in the area. These cells are probably
unsuitable to create reasonably sized bounded polygons, as these Voronoi polygons tend to be
rather big, and hence result in population densities for the coastal cells (on land) that are too low.
Instead one could consider only the parts of the corresponding Voronoi polygons that intersect
with land, as most active cell phones can be found there.

Another solution for the (terrestrial) coastal cells would be to assign the average area of the sizes
of Voronoi polygons corresponding to interior cells, i.e. with Voronoi polygons bounded in size,
possibly of cells situated not too far from the coast.

Figure 6.6 shows a coastal area in the north of The Netherlands, bordering the North Sea. Note
that there are also cells in the North Sea. They are much less densely distributed than terrestrial
cells, for obvious reasons. This explains the spikiness of the Voronoi polygons corresponding to
(terrestrial) boundary cells. This time we should accept them, as they result from a real setting of
cells.

Figure 6.6 also shows that we have spiky Voronoi polygons in the IJsselmeer, which used to be
connected to the North Sea before it was closed off by the ‘Afsluitdijk’.27)

In short, it is clear that the spiky boundary cells are a bit of an issue and should be considered
more carefully. It is well possible that part of them are artifacts that can be left out of the picture

27) Literally translated ‘Afsluitdijk’ means ‘closing dyke’. But actually the structure is a ‘dam’. So ‘Afsluitdijk’ is, as a matter
of fact, a misnomer.
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as they are of little importance for the overall results. Or they are less harmful than they appear
to be because they will be used truncated and only the parts that cover land will be used. But
anyway, we shall not go into this issue here more deeply as we want to move on to other topics.
This paper only wants to draw attention to them.

Figure 6.6 Coastal boundary Voronoi polygons near the North Sea. Cells located off
shore (in the North Sea and the IJsselmeer) help to limit the size of the terrestrial
boundary cells, but not as well as the cells across the border in Figure 6.5, as the
density of the off shore cells is much less than that of the terrestrial cells in the area. A
colour coded Voronoi density is shown as an example.

7 Municipal densities

The Voronoi partition generated by the locations of the cells as described in Section 6 is a means
to an end. They are used to transform cell densities per hour block to similar densities defined on
municipalities, or other meaningful geographic areas that partition the country. In fact, we only
consider municipalities as such areas. For other meaningful geographic partitions the
transformation of densities would be similar.

Two kinds of transformations are considered. The first transformation, in Section 7.2, is
numerical in character, where a density value for each municipality is computed. As in case of a
Voronoi density, the municipal density has a constant value for each municipality. These values
may differ per municipality. This section describes the steps needed to compute the municipal
density, for an hour block, from the Voronoi density for the same hour block. This process has to
be repeated for each hour block. These municipal densities are considered separately. There is
no attempt to understand how they evolved from each other. This aspect, concerning density
flow, is considered somewhere else, namely in Section 14.
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The second transformation, in Section 7.3, is graphical. Its goal is to produce a picture of the
density. It obtained by smoothing a Voronoi density, using a graphical interpolation technique,
and overlaying the result with the contours of the various municipalities, as a visual aid.

7.1 From Voronoi partition to municipal partition

We want to consider the transition of one partition of a set to another. As a concrete example,
and one that is important for the present paper, we consider a Voronoi partition (generated by
the locations of cells) and a partition in municipalities, both in country 𝐿 (The Netherlands).

LetV = {𝑉1, … , 𝑉𝑛} andM = {𝑀1, … ,𝑀𝑝} be partitionings of 𝐿 in Voronoi polygons and
municipalities, respectively . Let

𝑊𝑖𝑗 = 𝑉𝑖 ∩𝑀𝑗 (25)

for 𝑖 = 1,… , 𝑛 and 𝑗 = 1,… , 𝑝. We are only interested in the nonempty sets𝑊𝑖𝑗. These sets are
the building blocks forV andM in the sense that

𝑉𝑖 =ራ
𝑗
𝑊𝑖𝑗 , for 𝑖 = 1,… , 𝑛,

𝑀𝑗 =ራ
𝑖
𝑊𝑖𝑗 , for 𝑗 = 1,… , 𝑝, (26)

where the𝑊𝑖𝑗 involved in the unions are all nonempty sets. These sets form the refinement of
the partitionsV andM, which is denoted byV ∧M. We have for (𝑖, 𝑗) ≠ (𝑘, 𝑙) that

𝑊𝑖𝑗 ∩𝑊𝑘𝑙 = ∅. (27)

Let 𝑟𝑖𝑗 = |𝑊𝑖𝑗|, with𝑊𝑖𝑗 given in (25). Let

𝑅 = ቌ
𝑟11 ⋯ 𝑟1𝑝
⋮ ⋱ ⋮
𝑟𝑛1 ⋯ 𝑟𝑛𝑝

ቍ

′

= ቌ
𝑟11 ⋯ 𝑟𝑛1
⋮ ⋱ ⋮
𝑟1𝑝 ⋯ 𝑟𝑛𝑝

ቍ . (28)

𝑅 is used in Section 7.2, where it plays a part in the (linear) transformation from Voronoi
densities to municipal densities.
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7.2 From Voronoi density to municipal density

In the present section we show how the Voronoi density induced by cells can be transformed to a
density on municipalities. It is an example of using the refinement of two partitions of the same
set, in this case 𝐿. The partitions areV of Voronoi polygons andM of municipalities, as defined in
Section 7.1. The Voronoi polygons are just auxiliary objects needed to obtain municipal densities
from cell location densities, as municipalities are statistically meaningful geographic areas.

In analogy of equation (17) we can write

𝑓ℎ𝜇 =
𝑛


𝑖=1

𝑝


𝑗=1

|𝑊𝑖𝑗|
|𝑉𝑖|

𝟙𝑊𝑖𝑗 𝑓ℎ𝑉𝑖

=
𝑛


𝑖=1

𝑝


𝑗=1

|𝑊𝑖𝑗|
|𝑉𝑖|

𝟙𝑊𝑖𝑗

𝑓ℎ𝑐𝑖
|𝑉𝑖|

=
𝑝


𝑗=1

𝑛


𝑖=1

|𝑊𝑖𝑗|
|𝑉𝑖|2

𝟙𝑊𝑖𝑗 𝑓ℎ𝑐𝑖 , (29)

where𝑊𝑖𝑗 is defined in (25). We can write (29) in matrix form:

𝑓ℎ𝜇 = ቀ1⃗𝜇ቁ
′
𝑅𝑉−2𝑓ℎ𝐶 , (30)

where

ቀ1⃗𝜇ቁ
′
= ቀ𝟙𝜇1 , ⋯ , 𝟙𝜇𝑝ቁ , (31)

and where the 𝜇𝑗 , for 𝑗 = 1,… , 𝑝, represent the (geometric) municipalities, viewed as sets
(polygons) situated in 𝐿. 𝑅 is the matrix defined in (28), and 𝑉 is the diagonal matrix:

𝑉 = ቌ
|𝑉1| ⋯ 0
⋮ ⋱ ⋮
0 ⋯ |𝑉𝑛|

ቍ . (32)

We can write (30) concisely as

𝑓ℎ𝜇 =ℳ𝑓ℎ𝐶 , (33)

where
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ℳ = ቀ1⃗𝜇ቁ
′
𝑅𝑉−2. (34)

ℳ is only about the geometry/geography, namely the municipal partitioning of 𝐿. It only
depends on the intersection of the Voronoi partition and the municipal partition. Of course, this
independence of ℎ only holds if the cell locations (and hence the Voronoi partitioning) and the
definitions of the municipalities do not change during the observation period𝑊. If they do,ℳ
changes accordingly. We shall assume that the Voronoi partitioning with the cell locations as
generators and the municipal partitioning do not change during the observation period𝑊.

The part of (33) consisting of 𝑓ℎ𝐶 contains the statistical information. Now 𝑓ℎ𝐶 is time dependent
(hour block ℎ) and is entirely unrelated to the municipal geometry.

Furthermore,ℳ ≥ 0 and

𝜄𝑝 =ℳ𝜄𝑛 , (35)

whereℳ is of size 𝑝 × 𝑛, with 𝑝 the number of municipailities and 𝑛 the number of Voronoi
polygons, which equals the number of cells. 𝜄𝑝 is the all ones column matrix of length 𝑝 (as
defined in (8)); likewise 𝜄𝑛. ℳ is a Markov like matrix, except that it is not square, as there are
many more cells than municipalities.

In Figure 7.1 an example is shown of the transformation of a Voronoi density for an hour block to
a municipal density for the same hour block, featuring the municipality Aalsmeer and the
Voronoi polygons in the area. Those that intersect this municipality have been coloured with
heavily accentuated colours.

In Figure 7.2 we see the same municipality as in Figure 7.1, namely Aalsmeer, with untruncated
and truncated Voronoi polygons inside. For each truncated Voronoi polygon the associated
weight is given, which is the ratio of its area and that of the original, untruncated polygon.

7.3 Heatmaps of Voronoi densities

The conversion in the present section is graphically oriented, whereas the one in Section 7.2 is
numerical, intended for computations. There are several possibilities for such graphical
conversions, intended to produce images that are smoothed, thus hiding abrupt changes in
boundaries of areas and presented as colour‐coded densities. Such colour‐coded maps are called
heatmaps.

If we want a density function that is smoother than a locally constant one (that is, constant on
each Voronoi polygon) we need an extra processing step. There exist interpolation procedures
that can be used for this purpose. There is nearest neighbour interpolation (see Appendix B.1)
and natural neighbour interpolation (see Appendix B.2), which comes in (at least) two variants
(by Sibson and by Laplace) that differ only in the weights used. In Chapter 6 of [8] the subject of
smoothing is discussed in the context of Voronoi partitions.
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Figure 7.1 Municipality of Aalsmeer and the intersecting Voronoi polygons of
neighbouring cells are shown. Nonintersecting Voronoi polygons have not been
coloured.

Figure 7.2 Truncated Voronoi polygons intersecting with the municipality of
Aalsmeer are shown. The numbers inside the truncated polygons indicate the fraction
of the area of the original Voronoi that this concerns (relative sizes). The colour
coding is that of these relative sizes. The darker the colour, the larger the relative size.
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In Figure 7.3 an example of a map with a colour coded Voronoi density is shown. The contour
lines of municipalities have also been plotted, as a visual aid. In Figure 7.4 a smoothed version of
this map is shown. Natural neighbour interpolation was used as a smoothing technique.

Figure 7.3 Voronoi polygons with the address density colour coded (the darker the
colour, the higher the density value). Contours of municipalities have been added for
visual support.

Figure 7.4 Heat map of a smoothed version of the map in Figure 7.3. The smoothing
used natural neighbour interpolation. Contours of municipalities have been added for
visual support.

In a more abstract sense, the smoothing of a Voronoi density 𝑓ℎ𝑉 as defined in (17) into 𝑓ℎ𝑆𝑉 is a
linear transformation 𝒮 with

𝑓ℎ𝑆𝑉 = 𝒮𝑓ℎ𝑉 , (36)
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where 𝑆 denotes a smoothing technique such as described in Appendix B, 28) such as natural
neighbourhood interpolation. It should be noted that the linear transformation 𝒮 does not
depend on ℎ.

It is not guaranteed that 𝑓ℎ𝑆𝑉 is a density, even though 𝑓ℎ𝑉 is. It is certainly a nonnegative function.
It can easily be made into a density by normalizing it.

8 Cell link digraph

The cell link digraph is a directed graph where the cells are the nodes. The arcs (𝑐1, 𝑐2) indicate
that cell 𝑐2 can be reached from cell 𝑐1 in at most 2 hours. The idea is that if a cell phone is active
in 𝑐1 in hour block ℎ cell 𝑐2 can be reached in hour block ℎ + 1 if not even already in hour block
ℎ. The arcs are found on the basis of empirical data in the possession of the telecom provider. So
the cell link digraphs gives a sense of proximity of cells in time units (hour blocks) that are
relevant to the problem we study in the present paper.

In the present section we consider in some detail how the telecom provider could produce the
cell links (arcs) from the source data. These data yield information about the reachability of cells
within a limited time, in our case 2 subsequent hour blocks, say ℎ and ℎ + 1. So we should be
looking for a cell in hour block ℎ and which cells can be reached (by at least one cellphone) in
hour block ℎ + 1. In addition we should consider the possible links within one hour block, that is
cells that are visited by cell phones within one hour block. Cells even closer to each other may
then be revealed. As this is about reachability, the exact hour blocks ℎ are not relevant. We start
considering hour blocks ℎ and hour block pairs ℎ and ℎ + 1, but then aggregate over these
parameters.

To make things a bit more concrete we consider the example data in Appendix A. It is assumed
that the production of the link data is done by the telecom provider, as the source data used
should be considered sensitive as it is personal data. The link data released to the statistical
office, however, are aggregate data obtained from these basic data: they are not about individual
persons. There is also an aggregation over the various pairs of hour blocks ℎ and ℎ + 1 to obtain
the link data, which also adds to the safety of the link data.

It should be stressed that the link data are derived from empirical data, that is, on the basis of
observed movements of cell phones. Deriving such data from studying map information
(including infrastructure) would in theory be possible, but would be much more complicated,
more laborious to obtain and probably of poorer quality than follows from the empirical
approach we take.

The link data are about reachability of cells, in a limited time. It has nothing to do with the
intensity of links, only about possible reachability on the basis of actual observations. In Section
9 data concerning flow between cells is considered, that is also derived empirically. It provides

28) Or another such technique, not mentioned here. There may also be nonlinear smoothing methods, but at this point
we are not interested in these techniques, as they do not fit the linear transformation model that we are considering
here.
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each arc (cell link) with a number expressing the strength (intensity) of the flow between cells
that are linked.

We first consider cells that were visited by at least one cell phone in different hour blocks. In a
separate section we then consider the cells that are visited by cell phones in a single hour block.

8.1 Adjacent cells

In the present section we consider how cell phones travelled from a cell in hour block ℎ to cells in
hour block ℎ + 1. Each such combination defines an arc in the link digraph, which has the cells as
its nodes. The arcs present direct transitions between cells. They indicate which cells can be
reached from a given cell ‘occupied’ in one hour block and reached in the next hour block, that is
its direct successor. As reachability29) does not depend on the actual hour block pairs, the link
data are obtained by aggregating the reachability results over all possible hour block pairs ℎ and
ℎ + 1.

For the moment we concentrate on a particular (𝑐, ℎ) combination and consider all the cell
phone id’s with that cell and hour block combination. Next, we consider all (𝑐, ℎ + 1)
combinations. We are particularly interested in the cell phones appearing in the (𝑐, ℎ)
combination that are also active in any cell 𝑑 in hour block ℎ + 1. For then there is at least one
active cell phone who passed from cell 𝑐 to cell 𝑑 from one hour block to the next. If there is
such a cell phone we create an ordered pair (𝑐, 𝑑) of cells. These ordered pairs will be arcs in the
link digraph of cells.

Since we are looking for possible transitions from one active cell to the next, one hour block later,
there are many more pairs of hour blocks to inspect, to be precise 23 as there are 24 hour blocks
in a day (only the last hour block does not have a ‘successor’).

We now consider an example, namely the one represented in Appendix A. From Table A.1 we
take two subtables with information that we need to derive the link data, which in fact is a
digraph with the cells as nodes and where the arcs indicate direct transitions between cells for
adjacent hour blocks. The results are presented in Table 8.1, which is about hour blocks ℎ and
ℎ + 1, and in Table 8.2, which is about hour blocks ℎ + 1 and ℎ + 2. The record numbers of the
original table have been preserved for easy reference. They are not used in our computations.

From Table 8.1 we deduce Table 8.3, which shows only the pairs of cells for which (at least) one
cell phone was active. These pairs of cells (in the order ℎ, ℎ + 1) are arcs in the cell link digraph.
Similarly we deduce Table 8.4 from Table 8.2.

Remark For simplicity we have chosen to use the same id’s in Table 8.1 and Table 8.2. It would
have been possible to use different and independent identifiers in these tables. But this would
only yield extra safety within the telecom provider. These cell phone identities (original or
surrogate) are not used in the data to be released to the statistical office. For our computations
such deliberations are not needed. The identifiers in each table are only used to collect the data
that belong to the same cell phone. The actual identity of a cell phone is of no importance.
Surrogate keys could be used instead. □

29) As a potentiality, a possibility. We do not consider the situation whereby reachability is time dependent. This happens
in reality, but will be left out of our considerations for simplicity’s sake.
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rec h bl cell id rec h bl cell id
1 h c1 id1 13 h+1 c1 id2
2 h c2 id3 14 h+1 c2 id2
3 h c2 id5 15 h+1 c3 id3
4 h c3 id5 16 h+1 c3 id5
5 h c3 id6 17 h+1 c4 id5
6 h c4 id6 18 h+1 c4 id6
7 h c4 id8 19 h+1 c4 id8
8 h c5 id8 20 h+1 c6 id8
9 h c6 id8 21 h+1 c6 id11
10 h c6 id11 22 h+1 c6 id12
11 h c6 id12 23 h+1 c7 id12
12 h c7 id12

Table 8.1 Records (rec) of active cell phones (id) at cells (cell) in hour blocks (h bl) ℎ
and ℎ + 1.

rec h bl cell id rec no h bl cell id
13 h+1 c1 id2 27 h+2 c4 id5
14 h+1 c2 id2 28 h+2 c5 id6
15 h+1 c3 id3 29 h+2 c5 id7
16 h+1 c3 id5 30 h+2 c7 id8
17 h+1 c4 id5 31 h+2 c7 id9
18 h+1 c4 id6 32 h+2 c1 id9
19 h+1 c4 id8 33 h+2 c1 id10
20 h+1 c6 id8 34 h+2 c2 id11
21 h+1 c6 id11 35 h+2 c3 id11
22 h+1 c6 id12 36 h+2 c4 id11
23 h+1 c7 id12 37 h+2 c5 id12
24 h+2 c2 id1 38 h+2 c6 id12
25 h+2 c2 id2 39 h+2 c7 id12
26 h+2 c3 id4

Table 8.2 Records (rec) of active cell phones (id) at cells (cell) in hour blocks (h bl)
ℎ + 1 and ℎ + 2.

From Table 8.3 we deduce the following arcs of the cell link digraph, including loops:

(𝑐2, 𝑐3), (𝑐2, 𝑐4), (𝑐3, 𝑐3), (𝑐3, 𝑐4), (𝑐4, 𝑐4), (𝑐4, 𝑐6), (𝑐5, 𝑐4), (𝑐5, 𝑐6), (𝑐6, 𝑐4), (𝑐6, 𝑐6), (𝑐6, 𝑐7),
(𝑐7, 𝑐6), (𝑐7, 𝑐7).

The first cell of each pair pertains to hour block ℎ, whereas the second one pertains to hour block
ℎ + 1.

From Table 8.4 we deduce in the same way as before the following arcs of the cell link digraph,
including loops:

(𝑐1, 𝑐2), (𝑐2, 𝑐2), (𝑐3, 𝑐4), (𝑐4, 𝑐4), (𝑐4, 𝑐5), (𝑐4, 𝑐7), (𝑐6, 𝑐2), (𝑐6, 𝑐3), (𝑐6, 𝑐4), (𝑐6, 𝑐5), (𝑐6, 𝑐6),
(𝑐6, 𝑐7), (𝑐7, 𝑐5), (𝑐7, 𝑐6), (𝑐7, 𝑐7).

Combining these two sets of arcs yields, after deduplication:

(𝑐1, 𝑐2), (𝑐2, 𝑐2), (𝑐2, 𝑐3), (𝑐2, 𝑐4), (𝑐3, 𝑐3), (𝑐3, 𝑐4), (𝑐4, 𝑐4), (𝑐4, 𝑐5), (𝑐4, 𝑐6), (𝑐4, 𝑐7), (𝑐5, 𝑐4),
(𝑐5, 𝑐6), (𝑐6, 𝑐2), (𝑐6, 𝑐3), (𝑐6, 𝑐4), (𝑐6, 𝑐5), (𝑐6, 𝑐6), (𝑐6, 𝑐7), (𝑐7, 𝑐5), (𝑐7, 𝑐6), (𝑐7, 𝑐7).
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id ℎ ℎ + 1
id3 𝑐2 𝑐3
id5 𝑐2, 𝑐3 𝑐3, 𝑐4
id6 𝑐3, 𝑐4 𝑐4
id8 𝑐4, 𝑐5, 𝑐6 𝑐4, 𝑐6
id11 𝑐6 𝑐6
id12 𝑐6, 𝑐7 𝑐6, 𝑐7

Table 8.3 Cell phones (id) and the cells (c𝑗) active in hour blocks ℎ and ℎ + 1.

id ℎ + 1 ℎ + 2
id2 𝑐1, 𝑐2 𝑐2
id5 𝑐3, 𝑐4 𝑐4
id6 𝑐4 𝑐5
id8 𝑐4, 𝑐6 𝑐7
id11 𝑐6 𝑐2, 𝑐3, 𝑐4
id12 𝑐6, 𝑐7 𝑐5, 𝑐6, 𝑐7

Table 8.4 Cell phones (id) and the cells (c𝑗) active in hour blocks ℎ + 1 and ℎ + 2.

If there were more pairs of adjacent hour blocks, they would also yield arcs, which should be
added to this list, if not already present. In Section 8.2 we discuss that there are even more arcs
of the cell link digraph that can be retrieved from Tables 8.3 and 8.4.

Remark A move from cell 𝑐 to itself may be achieved by not moving at all, provided this is
physically possible.30) But it may also be achieved, for example, by an active cell phone
communicating via 𝑐 which then moves, de‐activated, to any other place, and then is back near 𝑐
in hour block ℎ + 1 when it is activated. This, of course, holds for any cell 𝑐. Note that this fact
follows from a reasoning using common knowledge, rather than from empirical observation.
Such a movement cannot be detected by the method we are using. □

In the present section we found arcs by considering cells in which a cell phone was present in
adjacent hour blocks. But this is not all: within a single hour block it is possible for a cell phone to
be active at different cells. Section 8.2 considers this possibility.

8.2 Nearby adjacent cells

In Section 8.1 we considered links (𝑐𝑖 , 𝑐𝑗) in the cell link digraph with 𝑐𝑖 from an hour block 𝑘 and
𝑐𝑗 from the next hour block 𝑘 + 1. But in addition to these links we also have those where 𝑐𝑖 and
𝑐𝑗 are from the same hour block, as they also can be reached within two hours. If we inspect
Table 8.3 we derive the following such arcs:

(𝑐2, 𝑐3), (𝑐3, 𝑐2), (𝑐3, 𝑐4), (𝑐4, 𝑐3), (𝑐4, 𝑐5), (𝑐4, 𝑐6), (𝑐5, 𝑐4), (𝑐5, 𝑐6), (𝑐6, 𝑐4), (𝑐6, 𝑐5), (𝑐6, 𝑐7),
(𝑐7, 𝑐6).

Note that for each pair {𝑎, 𝑏} of such cells we have assumed they they imply the arc (𝑎, 𝑏) as well
as the arc (𝑏, 𝑎). This actually is based on an assumption: we know at least one of these is an arc,
but we do not know which one. One could delve deeper into the data to find out, which one is an

30) An exception to this would be a cell phone in an area at which one cannot stay put and can only pass through. For
instance in case of a cell next to a train track. Such cells are probably rare (in The Netherlands), if they exist at all.
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arc (and possibly both) but we think the present method is acceptable and has the advantage
that it needs no extra work. Likewise we can deduce from Table 8.4 the following such arcs:

(𝑐1, 𝑐2), (𝑐2, 𝑐1), (𝑐2, 𝑐3), (𝑐2, 𝑐4), (𝑐3, 𝑐2), (𝑐3, 𝑐4), (𝑐4, 𝑐2), (𝑐4, 𝑐3), (𝑐4, 𝑐6), (𝑐5, 𝑐6), (𝑐5, 𝑐7),
(𝑐6, 𝑐4), (𝑐6, 𝑐5), (𝑐6, 𝑐7), (𝑐7, 𝑐5), (𝑐7, 𝑐6).

If we combine both sets of newly found arcs with the one obtained in Section 8.1 we find, after
deduplication:

(𝑐1, 𝑐2), (𝑐2, 𝑐1), (𝑐2, 𝑐2), (𝑐2, 𝑐3), (𝑐3, 𝑐3), (𝑐2, 𝑐4), (𝑐3, 𝑐2), (𝑐3, 𝑐4), (𝑐4, 𝑐3), (𝑐4, 𝑐4), (𝑐4, 𝑐5),
(𝑐4, 𝑐6), (𝑐4, 𝑐7), (𝑐5, 𝑐4), (𝑐5, 𝑐6), (𝑐5, 𝑐7), (𝑐6, 𝑐2), (𝑐6, 𝑐3), (𝑐6, 𝑐4), (𝑐6, 𝑐5), (𝑐6, 𝑐6), (𝑐6, 𝑐7),
(𝑐7, 𝑐5), (𝑐7, 𝑐6) (𝑐7, 𝑐7).

We can represent this in a more concise form as an adjacency matrix. See Table 8.5.

c1 c2 c3 c4 c5 c6 c7 c8 c9
c1 0 1 0 0 0 0 0 0 0
c2 1 1 1 1 0 0 0 0 0
c3 0 1 1 1 0 0 0 0 0
c4 0 0 1 1 1 1 1 0 0
c5 0 0 0 1 0 1 1 0 0
c6 0 1 1 1 1 1 1 0 0
c7 0 0 0 0 1 1 1 0 0
c8 0 0 0 0 0 0 0 0 0
c9 0 0 0 0 0 0 0 0 0

Table 8.5 Adjacency matrix of the cell link digraph.

It should be pointed out that the adjacency matrix in Table 8.5 concerns a toy example, so it has
some odd features. For instance, the fact that some rows and colums contain only 0’s implying
that certain cells are not linked to any other cell (such as cells 𝑐8 and 𝑐9). For an adjacency matrix
based on real data this is highly unlikely. However, the asymmetry of the adjacency matrix in the
example is likely to hold for a real cell network as well. This is also the case for the existence of
loops, corresponding to transitions to the same cell. Having loops is not a property of flow
networks. Instead, such networks have the property that for each node in the network holds that
total inflow equals total outflow.31) This property precludes that nodes have a capacity to store
‘mass’. As the cell networks we consider in this paper do have the ‘mass’ storing capacity, we are
dealing with somewhat different flow networks here.

9 Cell density ϐlow
The cell density flow is the basic density flow in the present paper from which all other density
flows in this paper are derived: the geometric cell density flow, the Voronoi flow and the
municipality flow. The cell density flow is derived from the intermediate data provided by the
telecom provider to the statistical office (see Section 3.3). From this information Markov
matrices can be derived, indicating the flow from two consecutive hour blocks ℎ and ℎ + 1, for
ℎ = 1,… , 23.

31) Which is called Kirchhoff’s law in the theory of electrical networks.
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9.1 Deriving the Markov matrices

In this section we describe data on the flow between cells, i.c. Markov matrices for each pair of
consecutive hour blocks ℎ and ℎ + 1, for ℎ = 1,… , 23, assuming the time window is a full day. To
obtain these data the method to obtain the link data as considered in Section 8 should be
refined. We consider the construction of Markov matrices by using the example data of Appendix
A. It should be stressed that the telecom provider should prepare these data and deliver them to
the statistical office for use. In this way the safety of the data is guaranteed. The Markov matrices
can be considered safe. The intermediate data is not safe, but this is not a problem as the
telecom provider is the only actor to handle them, who is also the owner of the data from which
they are produced.

We now go back to the two sets of arcs in the cell link digraph, one derived from Table 8.3 and
the other from Table 8.4. But we now look differently at them: we are not interested in links
between cells but in flows between cells occurring between adjacent hour blocks, in our case ℎ
and ℎ + 1 as well as ℎ + 1 and ℎ + 2. The information we need can be derived from Table 8.3 for
hour blocks ℎ and ℎ + 1 and from Table 8.4 for hour blocks ℎ + 1 and ℎ + 2. This time we cannot
pool the data, as flow is a time dependent quantity. This time we do not deduplicate cells as in
the cell link case, but, quite to the contrary, we count the numbers of duplications. The results
can be found in Tables 9.1 and 9.2.32)

c1 c2 c3 c4 c5 c6 c7 c8 c9
c1 0 0 0 0 0 0 0 0 0
c2 0 0 2 1 0 0 0 0 0
c3 0 0 1 2 0 0 0 0 0
c4 0 0 0 2 0 1 0 0 0
c5 0 0 0 1 0 1 0 0 0
c6 0 0 0 1 0 3 1 0 0
c7 0 0 0 0 0 1 1 0 0
c8 0 0 0 0 0 0 0 0 0
c9 0 0 0 0 0 0 0 0 0

Table 9.1 Flowmatrix for the hour blocks ℎ and ℎ + 1.

c1 c2 c3 c4 c5 c6 c7 c8 c9
c1 0 1 0 0 0 0 0 0 0
c2 0 1 0 0 0 0 0 0 0
c3 0 0 0 1 0 0 0 0 0
c4 0 0 0 1 1 0 1 0 0
c5 0 0 0 0 0 0 0 0 0
c6 0 1 1 1 1 1 2 0 0
c7 0 0 0 0 1 1 1 0 0
c8 0 0 0 0 0 0 0 0 0
c9 0 0 0 0 0 0 0 0 0

Table 9.2 Flowmatrix for the hour blocks ℎ + 1 and ℎ + 2.

From the flow matrices in Tables 9.1 and 9.2 the Markov matrices in Tables 9.3 and 9.4 can be
obtained. Without further information these matrices describe the probability 𝑝𝑐𝑑 that a cell
phone at a certain cell 𝑐 in hour block ℎ (respectively, ℎ + 1) moves to a cell 𝑑 in hour block ℎ + 1
(respectively, ℎ + 2). This creates the picture of the flow of population density following a time

32) There is little duplication, however, in this toy example!
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dependent Markov chain, as the Markov matrices associated with adjacent hour blocks are not
constant but are allowed to change over time. The lack of memory of the diffusion process is a
result of the fragmented view of the flow that has been created on purpose: only from an hour
block ℎ to its immediate successor ℎ + 1 for ℎ = 1,… , 23, as no cell phone is followed over time.
This is precisely the view underlying a Markov process. It is time dependent because the various
Markov matrices involved can vary over time.

c1 c2 c3 c4 c5 c6 c7 c8 c9
c1 0 0 0 0 0 0 0 0 0
c2 0 0 2/3 1/3 0 0 0 0 0
c3 0 0 1/3 2/3 0 0 0 0 0
c4 0 0 0 2/3 0 1/3 0 0 0
c5 0 0 0 1/2 0 1/2 0 0 0
c6 0 0 0 1/5 0 3/5 1/5 0 0
c7 0 0 0 0 0 1/2 1/2 0 0
c8 0 0 0 0 0 0 0 0 0
c9 0 0 0 0 0 0 0 0 0

Table 9.3 Markov matrix for the hour blocks ℎ and ℎ + 1.

c1 c2 c3 c4 c5 c6 c7 c8 c9
c1 0 1 0 0 0 0 0 0 0
c2 0 1 0 0 0 0 0 0 0
c3 0 0 0 1 0 0 0 0 0
c4 0 0 0 1/3 1/3 0 1/3 0 0
c5 0 0 0 0 0 0 0 0 0
c6 0 1/7 1/7 1/7 1/7 1/7 2/7 0 0
c7 0 0 0 0 1/3 1/3 1/3 0 0
c8 0 0 0 0 0 0 0 0 0
c9 0 0 0 0 0 0 0 0 0

Table 9.4 Markov matrix for the hour blocks ℎ and ℎ + 1.

That the diffusion proces we are dealing with is not stationary is clear if we realize that the
movements during a working day in the morning are different from those in the evening. Many
workers travel to their work and in the evening many of them travel back. During the wekend
one may see different patterns: people tend to go shopping on Saturday and some time later
they return home. On Sunday they may visit a museum, a sporting event, a church, etc. and then
return home. Of course, the weather has an influence on when, how and where people travel.
Tourists and visitors to the country have their own behavioural patterns. All this buzzing around
is reflected in the Markov matrices.

9.2 Transformations between consecutive cell densities

Here we consider the link between cell density 𝑓ℎ𝐶 and 𝑓ℎ+1𝐶 . If𝑀ℎ
𝐶 denotes the Markov matrix

that describes the transition between the cell densities at hour blocks ℎ and ℎ + 1, we can write

𝑓ℎ+1𝐶 = ൫𝑀ℎ
𝐶 ൯

′ 𝑓ℎ𝐶 . (37)

It should be stressed that equations (37), for ℎ = 1,… , 23, in practice only hold approximately,
because the 𝑓ℎ𝐶 and𝑀ℎ

𝐶 are independent estimates which are unlikely to fit seamlessly, even in
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case measurement errors are absent. In Appendix E some suggestions are provided concerning
the modification of 𝑓ℎ𝐶 and𝑀ℎ

𝐶 for ℎ = 1,… , 23, in such a way that the equations (37) are
satisfied exactly.

9.3 Inactive cell phones andmissing ϐlow information

As remarked in Section 4.2 we should not ignore the fact that the population of cell phones is an
open one and that a cell phone that is not active has died, so to speak, but its whereabouts are
not known. It may have left (or entered) the country but it may also have been switched off (or
on). In case it was switched off it still has an (unknown) location in the country (i.e. a cell, or even
several cells, if it is moving) in which it would be localized if switched on. So it is missing
information problem that we are dealing with. In case of cell flow information we may see the
same problem.

This observation is closely linked to the missing data problem raised in Section 2.4.2. In fact, we
are dealing with two phenomena which both lead to missing data, although they are basically
different. On the one hand we have cell phones that are switched on or off, but that remain in
the country (or the area covered by the cells).33) On the other hand we have cell phones that
enter or leave the cell network. In the first case we could say that the cell phones are still present
but their positions are unknown. In the second case it is more appropriate to talk about an open
population, as cell phones physically enter or leave the area covered by the cells in the network
(roughly the country itself).34)

The problem is that the two situations cannot be distinguished if it is possible that a cell phone is
present in the country 𝐿 in hour block ℎ and is outside 𝐿 in hour block ℎ + 1. If this would be the
case with a cell phone we would not know if it has left the country or has been switched off. In
case the country is The Netherlands it seems possible to exit the country in the situation
sketched from pretty every location in the country in the given time span. Similar things can be
said about entering the country. If half hour blocks would be used, or even shorter time periods,
there would be areas that are too far removed from the border to exit or enter the county in a
short time span. In a bigger country or when shorter time blocks are used, there are places from
which one can (under normal circumstances) not leave or enter the country. Then one knows
(almost for certain) that cell phones starting or arriving there one time block later, that the cell
phone must have been switched off. Likewise it is reasonable to assume that cell phones
disappearing or appearing in the next time block have probably left the country or entered it.
One could then proceed with modelling both phenomena and estimate parameters from the
data. Using observed travelling patterns one could use this to make estimates for the missing
flow information. However, we shall not elaborate this suggestion, as in case of The Netherlands
it cannot be applied fruitfully: the country is too small when the time blocks used are in fact hour
blocks, as we have assumed from the outset. We only give some initial ideas for the approach.

So suppose we distinguish between the two causes for (dis)appearing cell phones:

– by being switched on or off by their users.

33) For simplicity we assume that the area covered by the cell network and the area covered by the country 𝐿 coincide.
But this is only approximately true.

34) That cell phones outside the country also have locations is of course true but irrelevant, as our scope is only the cell
phones within the country 𝐿.
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– through entering or leaving the cell network, which we assume roughly to correspond with
entering or leaving the country.

The first phenomenon can be studied in ‘interior cells’, cells for which the second phenomenon
cannot occur because one is too far removed from the boundary (more than a time block’s travel
by the fastest mode of transport that would locally be available, say a train or a car).

Another possibility is to treat the unknown start (previous cell) of a cell phone (when switched
on) or the unknown goal (next cell) as missing (cell) values and impute these. A simple model
would consider the switching on or off of a cell phone as a random event, which happens
independently of the start or goal cell. This would result in a missing data model in which the
start cell or the goal cell equals the same pattern as in case of fully observed cells (provided these
are available). See Appendix D for some ideas on such an imputation model. For a general
discussion of missing data and how to deal with them in statistical data see [6].

This imputation would, however, not necessarily result in ‘population mass’ preservation. A
switched off cell phone may be switched on for the first time not immediately, but several time
blocks later. It is not the intention to follow a cell phone with an imputed cell position for more
than one step, as this would be highly speculative, as the data for this are not available. This
imples that you consider a path generated by a Markov chain, generating the next direction by
drawing from the appropriate set of transition probabilities. Of course, this is not how individuals
travel in reality. But it is a way to describe the movements of a collective of individuals.

Remark A special case is at night when many persons are not active on their cell phones because
they are asleep. So many missing data for cell phone locations is an inherent weakness of the
method considered in this paper. Using only the relatively few active cell phones is possibly risky.
To correct for this some extra modelling work is needed, with additional input to be provided by
the telecom provider, such as the last observed cell locations of cell phones, in aggregate form.
We shall not study this problem in the present paper, but reserve it for future research. □

10Geometric cell density ϐlow

The geometric cell density flow is strongly linked to the cell density flow. In this case the new
aspect is that the flow has obtained a geometric dimension. The development at this level is in
itself not important. It concerns an intermediate step, which however is important. It allows two
things to be realized: computation of the Voronoi density flow (see Section 11) and computation
of the municipality density flow (see Section 13). In the former case, the locations of the cells can
be used as generators of a Voronoi partition. In the latter case, the locations of the cells are used
to determine the municipality each cell is located in.

Using (14) we have for the link between the geometric cell densities of hour blocks ℎ and ℎ + 1:

𝑓ℎ+1𝐺𝐶 = ቀ�⃗�𝐺𝐶ቁ
′
𝑓ℎ+1𝐶 = ቀ�⃗�𝐺𝐶ቁ

′
൫𝑀ℎ

𝐶 ൯
′ 𝑓ℎ𝐶 = ቀ𝑀ℎ

𝐶 �⃗�𝐺𝐶ቁ
′
𝑓ℎ𝐶 . (38)
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where (37) was used to link 𝑓ℎ+1𝐶 and 𝑓ℎ𝐶 . Note that (38) consists of a part (namely �⃗�𝐺𝐶) that is
about the location of the cells and a part (namely ൫𝑀ℎ

𝐶 ൯
′ 𝑓ℎ𝐶 ) that is about the cell density flow.

We see a similar split between geometry and cell density flow in case of Voronoi density flow in
Section 11 and the municipality flow in Section 13.

If we put

ℳℎ
𝐺𝐶 = ቀ𝑀ℎ

𝐶 �⃗�𝐺𝐶ቁ
′
. (39)

then we can write (38) concisely as

𝑓ℎ+1𝐺𝐶 =ℳℎ
𝐺𝐶 𝑓ℎ𝐶 . (40)

We could explore the geographic cell flow a bit more, but it does not seem worth the effort. The
geographic cell density is not very interesting by itself. It is just an intermediate density to derive
Voronoi density and from this the municipal density. The corresponding flows are important and
we will consider these in Sections 11 and 13.

11 Voronoi density ϐlow

Voronoi density flow is very closely linked to cell density flow as there is a 1‐1 relationship
between cells and cell locations and between cell locations and Voronoi polygons. Using (20) we
have for hour block ℎ + 1

𝑓ℎ+1𝑉 = 𝒱 ൫𝑀ℎ
𝐶 ൯

′ 𝑓ℎ𝐶 . (41)

In (41) there is also a neat separation of information about the geometry of the Voronoi partition
(namely 𝒱) and information about the cell density (namely ൫𝑀ℎ

𝐶 ൯
′ 𝑓ℎ𝐶 ), more particularly, about

its dynamics. The geometric structure, i.e. the Voronoi partitioning, is assumed to be static in the
present paper.

By combining (41) and (20) we derive the following difference equation:

𝑓ℎ+1𝑉 − 𝑓ℎ𝑉 = 𝒱 ቀ൫𝑀ℎ
𝐶 ൯

′ − 𝐼𝑛ቁ 𝑓ℎ𝐶 , (42)

where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix.

From (41) also follows:
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𝑓ℎ+1𝑉 = 𝒱ቌ
ℎ

ෑ
𝑡=1

൫𝑀ℎ−𝑡+1
𝐶 ൯′ቍ𝑓1𝐶 = 𝒱ቌ

ℎ

ෑ
𝑡=1

𝑀𝑡
𝐶ቍ

′

𝑓1𝐶 (43)

If we put

𝒲ℎ
𝑉 = 𝒱 ൫𝑀ℎ

𝐶 ൯
′ . (44)

then we can write (41) as

𝑓ℎ+1𝑉 = 𝒲ℎ
𝑉 𝑓ℎ𝐶 . (45)

𝒲ℎ
𝑉 is a linear transformation, depending on both geometric/geographical and statistical

information.

12Municipal link digraph

In Section 8 we considered the cell link digraph. In the present section we want to use this
digraph to derive a municipal link digraph. We start with the adjacency matrix of the cell link
digraph. The idea is now to partition the (terrestrial) cells into groups according to the
municipality in which each of them is located. We first present a small example illustrating the
idea.

ExampleWe consider the adjacency matrix in Table 8.5 for the toy cell link digraph in Section 8.
In Table 12.1 we have indicated the cells grouped into the clusters 𝒞1 = {𝑐1, 𝑐2, 𝑐3},
𝒞2 = {𝑐4, 𝑐5}, 𝒞3 = {𝑐6, 𝑐7} and 𝒞4 = {𝑐8, 𝑐9}.

c1 c2 c3 c4 c5 c6 c7 c8 c9
c1 0 1 0 0 0 0 0 0 0
c2 1 1 1 1 0 0 0 0 0
c3 0 1 1 1 0 0 0 0 0
c4 0 0 1 1 1 1 1 0 0
c5 0 0 0 1 0 1 1 0 0
c6 0 1 1 1 1 1 1 0 0
c7 0 0 0 0 1 1 1 0 0
c8 0 0 0 0 0 0 0 0 0
c9 0 0 0 0 0 0 0 0 0

Table 12.1 Partitioned adjacency matrix of the cell link digraph deϐined in Section 8,
with respect to the clusters 𝒞1, 𝒞2, 𝒞3 and 𝒞4.

In Table 12.2 the adjacency matrix after clustering the cells in Table 12.1 is shown. In this case it
is not very interesting as it is very small. And it has only binary information as a link exists or it
does not.
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𝒞1 𝒞2 𝒞3 𝒞4
𝒞1 1 1 0 0
𝒞2 1 1 1 0
𝒞3 1 1 1 0
𝒞4 0 0 0 0

Table 12.2 Adjacency matrix for the clusters of cells 𝒞1, 𝒞2, 𝒞3, 𝒞4 derived from Table
12.1.

In Table 12.3 the strength matrix is shown that is derived from Table 12.1. In this matrix the
strength of each link is expressed by the number of cells that are contained in each part of this
latter table. This gives an impression about the intensity of links.

𝒞1 𝒞2 𝒞3 𝒞4
𝒞1 6 2 0 0
𝒞2 1 3 4 0
𝒞3 2 3 4 0
𝒞4 0 0 0 0

Table 12.3 Strength matrix for the clusters of cells 𝒞1, 𝒞2, 𝒞3, 𝒞4 derived from Table
12.1.

The strength matrix in Table 12.3 can also be expressed in a relative fashion, in such a way that all
row totals add up to 1. This yields Table 12.4 instead of Table 12.3.

𝒞1 𝒞2 𝒞3 𝒞4
𝒞1 3/4 1/4 0 0
𝒞2 1/8 3/8 1/2 0
𝒞3 2/9 1/3 4/9 0
𝒞4 0 0 0 0

Table 12.4 Relative strength matrix for the clusters of cells 𝒞1, 𝒞2, 𝒞3, 𝒞4 derived from
Table 12.1.

□

With this example in mind, it is straightforward to define the municipal link graph. This time we
start wil the cell link digraph. For each municipality we cluster the cells inside it. Then for each
cluster we determine if it is empty or not, coded as 0 or 1, respectively. This yields the municipal
link digraph we are looking for.

13 Municipal density ϐlow

As in case of cell density flow, we can consider municipal density flow. In both cases the flow is
described by appropriate Markov matrices. We first consider the formal aspects of the municipal
flows, assuming Markov matrices to describe the flow for each pair of consecutive hour blocks.
This is in complete analogy of the cell flow density case, and mainly serves the purpose of
establishing the necessary concepts and notation. Then, in a separate section, we consider the
link between the Markov matrices at the cell level and the corresponding Markov matrices at the
municipal level.
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13.1 Linking municipal densities of consecutive hour blocks

We now consider 𝑓ℎ𝜇 and 𝑓ℎ+1𝜇 , the municipal densities for hour blocks ℎ and ℎ + 1, respectively.
The transformation linking 𝑓ℎ𝜇 to 𝑓ℎ+1𝜇 is the Markov matrix𝑀ℎ

𝜇 . So we have:

𝑓ℎ+1𝜇 = ൫𝑀ℎ
𝜇 ൯

′ 𝑓ℎ𝜇 . (46)

𝑀ℎ
𝜇 is an𝑚 ×𝑚Markov matrix, where𝑚 denotes the number of municipalities. So𝑀ℎ

𝜇 ≥ 0 and
𝑀ℎ
𝜇 𝜄𝑚 = 𝜄𝑚, the all 1’s column vector of length𝑚. This matrix𝑀ℎ

𝜇 depends on ℎ as the dispersal
of cell phones is likely to follow the traffic pattern, for all modes of transport available combined.
In the morning a lot of people go to work and in the evening they return home, showing the
reversal dispersion pattern as in the morning. But this is a pattern only for those with a day job,
at a time when there are no holidays. People who work nightshifts, or who work from home, or
who are without a job, or tourists, they all have different travel patterns during the day. Of
course, these groups are not homogeneous and people tend to have individual travel patterns. A
combination of all these patterns is reflected in these matrices𝑀ℎ

𝜇 for the various hour blocks ℎ.

The Markov matrices𝑀ℎ
𝜇 are not independent from their counterparts𝑀ℎ

𝐶 in the cell case. In
Section 13.2 we consider this link more closely.

Remark It should be noted that (46) holds for population values for the densities 𝑓ℎ𝜇 , 𝑓ℎ+1𝜇 and
the Markov matrices𝑀ℎ

𝜇 . But in practice these are not known, only estimates thereof. For these
estimates it is not guaranteed that (46) holds. This requires some adjustments. There are various
possibilities: one can take the Markov matrices obtained from the observed data and consider
them as good approximations of the real versions. Then one needs to adjust the densities 𝑓ℎ𝜇 . Or
one considers both the densities and the Markov matrices as not accurate above, and then sets
out to adjust them both. Or one considers the densities 𝑓ℎ𝜇 as sufficiently precise and then tries
to adjust the Markov matrices. A priori, the last option seems to be the least likely. The present
paper is not able to deal with this issue, as no data are available. It is therefore also not clear to
which extent this is a problem in practice, that is, how much (46) is violated and how much
correction is needed. □

13.2 Linking Markov matrices for cell and municipal density ϐlows

In this section we consider the transformation of a cell density flow, as discussed in Section 9, to
a municipal cell flow. This can be achieved by aggregating Markov matrices describing cell flow
density in an appropriate manner to be shown. It can be likened to the case of deriving municipal
links from cell links in Section 9. We start illlustrating the approach with an example.

Example Suppose we have a 5 × 5Markov matrix𝑀 as presented in (47), with states 1,… , 5. By
grouping states 1, 2, 3 into state 𝐴 and states 4, 5 into state 𝐵,𝑀 induces a Markov matrix �̄�, as
given in (50).
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𝑀 = ⎛
⎜

⎝

𝑝11 𝑝12 𝑝13 𝑝14 𝑝15
𝑝21 𝑝22 𝑝23 𝑝24 𝑝25
𝑝31 𝑝32 𝑝33 𝑝34 𝑝35
𝑝41 𝑝42 𝑝43 𝑝44 𝑝45
𝑝51 𝑝52 𝑝53 𝑝54 𝑝55

⎞
⎟

⎠

= ቆ 𝑀11 𝑀12
𝑀21 𝑀22

ቇ , (47)

where𝑀11,𝑀12,𝑀21 and𝑀22 are submatrices of𝑀 of order 3 × 3, 3 × 2, 2 × 3 and 2 × 2,
respectively. We have

𝑀𝜄5 = 𝜄5, (48)

and hence

ቆ 𝑀11 𝑀12
𝑀21 𝑀22

ቇቆ 𝜄3
𝜄2 ቇ = ቆ 𝑀11𝜄3 +𝑀12𝜄2

𝑀21𝜄3 +𝑀22𝜄2
ቇ = ቆ 𝜄3

𝜄2
ቇ ≡ 𝜄5, (49)

where 𝜄𝑛 is the all ones column vector of length 𝑛 (see (8)).

Let �̄� be the Markov matrix for the states 𝐴 and 𝐵:

�̄� = ቆ 𝑟11 𝑟12
𝑟21 𝑟22 ቇ , (50)

where the entries 𝑟𝑖𝑗 can be derived from (47) using the following system of linear equations:

𝑟11 =
1
3

3


𝑖=1

3


𝑗=1

𝑝𝑖𝑗 ,

𝑟12 =
1
3

3


𝑖=1

5


𝑗=4

𝑝𝑖𝑗 ,

𝑟21 =
1
2

5


𝑖=4

3


𝑗=1

𝑝𝑖𝑗 , (51)

𝑟22 =
1
2

5


𝑖=4

5


𝑗=4

𝑝𝑖𝑗 .

Rewriting (51) in matrix form yields

�̄� = 𝐷𝐾′𝑀𝐾, (52)
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where

𝐷 = ቆ 1/3 0
0 1/2 ቇ = ቆ 3 0

0 2 ቇ
−1

(53)

and

𝐾 = ⎛
⎜

⎝

1 0
1 0
1 0
0 1
0 1

⎞
⎟

⎠

. (54)

So the linear transformation 𝒯 defined by

𝒯(𝑀) = 𝐷𝐾′𝑀𝐾 = �̄�, (55)

describes the aggregation of a 5 × 5Markov matrix𝑀 into a 2 × 2Markov matrix �̄�. □

Now we turn to the case important for the present paper: transition from cell densities to
municipal densities. We start with a Markov matrix𝑀ℎ

𝐶 derived by the telecom provider from the
cell phone data, at the cell level. We group the cells on the basis of the municipalities in which
they are located in (each cell is located in exactly one municipality). As in the case of the small
example above we compute𝑀ℎ

𝜇 , the aggregated Markov matrix at the municipal level. Below we
give the details by involving the various densities and transformations. If we use the same
notation as in the example above to denote this transformation, i.e. 𝒯, we have

𝒯(𝑀ℎ
𝐶 ) = 𝐷𝐾′𝑀ℎ

𝐶𝐾 = 𝑀ℎ
𝜇 , (56)

where 𝐾 is similar to (54) and is a matrix that defines which cells are located in which
municipalities. 𝐷 is a matrix similar to (53) and which is the inverse of a matrix with the number
of cells per municipality on the main diagonal.

It should be stressed that 𝒯 is independent of ℎ, provided the cell locations as well as the
definitions of the municipalities do not change during the observation period, which we had
assumed from the outset.

Another point to note is that 𝒯 is a transformation of transformations, namely the𝑀ℎ
𝐶 . That

distinguishes it from the other density transformations considered in the present paper.
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14 Transformations in context

The aim of the present section is to bring together all the densities considered in this paper so
they can be studied in context. Table 14.1 presents an overview of all the linear transformations
introduced in the present paper, with defining equations and references to the formulas in the
text where they have been defined.

Transformations Equations Formulas
𝒢 𝑓ℎ𝐺𝐶 = 𝒢𝑓ℎ𝐶 (14)
𝒱 𝑓ℎ𝑉 = 𝒱𝑓ℎ𝐶 (20)
ℳ 𝑓ℎ𝜇 =ℳ𝑓ℎ𝐶 (33)
𝒮 𝑓ℎ𝑆𝑉 = 𝒮𝑓ℎ𝐶 (36)

𝑀ℎ
𝐶 𝑓ℎ+1𝐶 = ൫𝑀ℎ

𝐶 ൯
′ 𝑓ℎ𝐶 (37)

ℳℎ
𝐺𝐶 , 𝒢 𝑓ℎ+1𝐺𝐶 =ℳℎ

𝐺𝐶𝑓ℎ𝐶 = 𝒢𝑓ℎ+1𝐶 (40), (14)
𝒲ℎ

𝑉 , 𝒱 𝑓ℎ+1𝑉 = 𝒲ℎ
𝑉 𝑓ℎ𝐶 = 𝒱𝑓ℎ+1𝐶 (45), (20)

𝑀ℎ
𝜇 ,ℳ 𝑓ℎ+1𝜇 = ൫𝑀ℎ

𝜇 ൯
′ 𝑓ℎ𝜇 =ℳ𝑓ℎ+1𝐶 (46), (33)

𝒯 𝑀ℎ
𝜇 = 𝒯(𝑀ℎ

𝐶 ) = 𝐷𝐾′𝑀ℎ
𝐶𝐾 (56)

ℛ �̃�ℎ𝐶 = ℛ′𝑓ℎ𝐶 (B.7)
Table 14.1 The linear transformations deϐined in this paper.

It is clear from Table 14.1 that the cell densities 𝑓ℎ𝐶 play a key role in the other densities that have
been introduced in the present paper. It is a nice feature of the approach that
geometry/geography and statistics can be cleanly separated. For some transformations in Table
14.1 (to witℳℎ

𝐺𝐶 ,𝒲ℎ
𝑉 and𝑀ℎ

𝜇 ) this is not the case because these operators combine both parts,
to stress that the transformations from 𝑓ℎ𝐶 are linear. But they can be written as products of
linear transformations as was shown in previous sections.

Also, if the location of cells does not change, these transformations do not change either. We
assume this to be the case in the present paper. If the geometry/geography changes at each
level35) then the linear transformation would change accordingly. But this process is unrelated to
the process that drives the changes of the cell densities.

In Figure 14.1 a digraph is shown how the linear transformations 𝒢, 𝒱,ℳ and 𝒮 are interrelated.
They are about changes in the geometry/geography and do not involve any statistics, which is
entirely represented by 𝑓ℎ𝐶 . It should be remarked that 𝑓ℎ𝑆𝑉 suggests one particular smoothed
version of a Voronoi density, but in fact several choices are possible. The densities in Figure 14.1
apply to a single hour block.

Multiplying the transformations in Figure 14.1 by 𝑓ℎ𝐶 yields a digraph with the dependencies
among the densities 𝑓ℎ𝐺𝐶 , 𝑓ℎ𝑉 , 𝑓ℎ𝜇 and 𝑓ℎ𝑆𝑉, which is depicted in Figure 14.2. The densities 𝑓ℎ𝜇 and
𝑓ℎ𝑆𝑉, are the important ones. The other two, 𝑓ℎ𝐺𝐶 and 𝑓ℎ𝑉 are intermediate ones, auxiliary to
producing the important ones.

As time development of all the derived densities concerns, they all are derived from that of the
cell density:

35) Starting with the location of the cells, which in turn has an effect on the Voronoi partioning, which in turn affects the
way they intersect with the municipal partitioning and also the smoothing of the Voronoi densities.
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ℳ 𝒮

𝒱

𝒢

Figure 14.1 Interrelationship of transformations of densities for the same
hourblock.

𝑓ℎ𝜇 𝑓ℎ𝑆𝑉

𝑓ℎ𝑉

𝑓ℎ𝐺𝐶

Figure 14.2 Interrelationship of densities for the same hourblock ℎ. They are
obtained from Figure 14.1 by multiplying each transformation with 𝑓ℎ𝐶 .

𝑓ℎ+1𝐶 = ൫𝑀ℎ൯′ 𝑓ℎ𝐶 (57)

Now (57) holds for ℎ = 1,… , 23 in our case. In Figure 14.3 the dependencies of the cell densities
is depicted, including the transformations like (57) linking them. These conditions are ideal, as if
no measurement errors are involved. In practice they will hold only approximately. These
constraints then act as real constraints for the data which may have to be modified to satisfy
these constraints. In Appendix E is discussed how this could be done.

𝑓ℎ𝐶 𝑓ℎ+1𝐶 𝑓ℎ+2𝐶 𝑓ℎ+3𝐶
𝑀ℎ
𝐶 𝑀ℎ+1

𝐶 𝑀ℎ+2
𝐶

Figure 14.3 A sequence of cell densities and the Markov matrices linking them.

Once the 𝑓ℎ𝐶 and𝑀ℎ
𝐶 , for ℎ = 1,… , 23, are made consistent, so will be all the derived densities:

𝑓ℎ𝐺𝐶 , 𝑓ℎ𝑉 and 𝑓ℎ𝜇 .

The linear transformation ℛ is set apart from the other ones in the present paper, as it only uses
geometric information, i.c the Voronoi polygons with the cell locations as generators, as auxiliary
information to find cells closest to a given cell, forming a neighbourhood. The cell densities in
each neighbourhood are averaged in some way (how, is not that important for the present,
general discussion) and are assigned to the center cell of the neighbouring cells.
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15 Animated density ϐlow

In Section 7.3 we considered the graphical presentation of smoothed Voronoi density for an hour
block ℎ as a heatmap. This is a static situation. If one is interested in the change of the
population density over time, one should show a sequence of such densities, in quick succession,
like a film. This ‘film’ shows directly, and immediately understandably, how population densities
change over time. The presentation is aimed at visualizing change of density and not about static
density. It should be borne in mind that the density estimates are based on active cell phones. So
during the night there will be little use of cell phones. This would (incorrectly) suggest low
densities. But looking at the dynamics, it would (correctly) suggest small changes in density.

The smoothed Voronoi densities are used only to give a graphical idea of the dynamic population
densities, by rendering them on a map, using different colours and shades of colours to show
differences in densities locally. The contours of the municipalities are plotted in such maps as
well only to provide some visual support for the user. The municipalities thus play a somewhat
different, more passive, role than in the numerical presentation.

In principle the original Voronoi densities could be used as well, saving the effort to compute the
smoothed Voronoi densities. In case they prove to be aesthetically less pleasant, one can still
decide to compute the smoothed densities.

16 Helmholtz ϐlow decomposition

The main goal of this paper is to derive population densities per hour block, starting with the cell
level and proceeding to the municipality level. But this only yields separate population densities,
without a clue about how they evolve from each other. So the next step is to study the
development of these densities. In previous sections we considered the population flow between
cells, due to moving cell phones and hence users. We could leave it at this. Or we go one step
further and analyze this density flow. This can, for instance, be done by computing the Helmholtz
decomposition of the flow, except the loops. This actually means leaving out the main diagonal
entries in Markov matrices and concentrating on the off‐diagonal entries, as will be explained.

In the networks considered in [14] no node has any capacity to hold ‘mass’. ‘Mass’ that flows in a
node also flows out at the next occasion. This is in contrast with the application studied in the
present paper: the cells have loops (and hence also the municipalities have loops). This indicates
that cell phones active in a particular cell 𝑐 in hour block ℎ may also be active in cell 𝑐 in the next
hour block ℎ + 1.

In fact, loops indicate local ‘traffic’, indeed very local traffic. We can separate those loops
immediately from the flow and concentrate on its remainder. For this remainder Kirchhoff’s law
holds. And to this remainder we can apply Helmholtz flow decomposition as decribed in [14]. We
do not wish to discuss this subject here, because it can be investigated best when flow data are
available.
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17Discussion

In the present paper an approach is sketched to estimate population densities for hour blocks,
that is time intervals of one hour. Also consideration is given to the change of these densities
from one hour block to the next. The data used for this model is cell phone data, from
anonymous cell phones. Any cell phone that is within the reach of the network of cells in The
Netherlands counts if it is active and provided that it has a subscription with the provider. This
includes users from outside The Netherlands when they happen to be in The Netherlands. And it
excludes Dutch cell phone users when they stay abroad.

With such data it is only possible to estimate the presence of cell phones in each hour block. It is
not possible to track any cell phone over a longer time. If the goal was only to estimate hourly
densities this would be sufficient. But we also want to say something about how densities
change. To do this, extra information is required, which provides information about transitions
made from one hour block to the next. This is comparable to a road network, where information
is given about how many cars go left, straight‐on, or turn right, at certain time intervals. This is
traffic information which is aggregate information. It does not contain information about
individual cars. So realistically, it is impossible to follow any car in the network.

In our case, cell phone location is in terms of cells. Cells are the objects through which cell
phones communicate with each other, with landline phones, with webpages on the internet, etc.
For our model it is only important when cell phones are active, and with which cells they
communicate (and for how long at which cells) when they are active. For simplicity we can
assume that an active cell phone communicates through the nearest cell in the network. But the
model can still be used if there is a switch of cells during a session of a cell phone in active use,
provided the presence at each of the cells involved can be computed.

In contrast with cars that physically do not appear or disappear suddenly36) active cell phones do
not have this persistence: the users of these cell phones can switch them on or off if and when
they want to. Also cell phones can enter the network, when they enter the country, or they can
leave it, when their users decide to.37) So the collection of cell phones is an open population.

In terms of flow of ‘mass’ through the cell network, a drawback of this openness is that
Kirchhoff’s law concerning mass preservation does not hold. This makes it difficult to describe
the (anonymous) flow of ‘mass’ through the network. For that reason we do not consider the
number of (anonymous) units flowing through the network. Instead, we describe the change of
population densities.

Due to the possibility cell switching (irrespective of a cell phone moving or not) implies that the
presence of a cell phone is not necessarily linked to a single cell, but may be associated with
several cells during an hour block. This in fact means that cell switching tends to diffuse the
location of cell phones. And in the next hour block the same may happen. So one ‘distributed
presence’ at some hour block may change into another one at the next hour block.

36) Whichwould be different if they had a device (a tracker) which sends its position at regular time intervals, which would
be possible to switch on or off.

37) This property they have in common with cars.
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So at the cell level we have hourly cell densities as well as Markov matrices providing information
about how these densities change, that is, their dynamics. If we associate with each cell location
the density of an hour block, we have made the first step towards density visualization on a map.
We call this the geometrical cell density.

The next step is to produce from this geometrical cell density a Voronoi density, that is a density
based on the Voronoi partition generated by the cell locations.38) The underlying idea is that the
density value at each cell location (for an hour block) is evenly distributed over the corresponding
Voronoi polygon. This gives useful but somewhat crude density information. We can then
proceed in two ways. In the first one we translate the density information for a Voronoi
partitioning generated by the cell locations into another partition, one which is of relevance in
official statistics, such as one based on municipalities. Each Voronoi polygon that intersects a
municipality donates a part of its density mass to that of this municipality. Municipalities form an
example of a geometric partitioning of the country that makes sense geographically and
statistically, in contrast to the Voronoi partition based on the cell locations. In the second way to
proceed with a Voronoi density is to smooth it and then colour code the resulting density, thus
obtaining a smoothed Voronoi density. By playing these visualized densities like a film one can
visualize their change.

As to the dynamics of the cell densities we have Markov matrices for each hour block pair
(ℎ, ℎ + 1) in the observation period. We can use these to compute the Markov matrices to
describe the transitions between municipalities, because it is known which cells are located in
which municipalities. So the Markov matrices for municipalities can be obtained by aggregating
Markov matrices at the cell level, by grouping the cells located in the same municipality.

It turns out that all the transformations used in the present paper, from one density to another
or from one Markov chain to another, are all linear, which is pleasing and interesting. It indicates
an inherent simplicity of the approach.

This is in a nutshell how the method is supposed to work. But there are a few problems that have
to be looked at carefully. And this should be done, ideally, with the use of real cell phone data.
The present paper is purely theoretical, and whose aim was to sketch an approach. The next step
should be to implement the method proposed and see how well it works in practice. There are
several issues that have to be addressed. They will be discussed next.

The first issue we consider concerns the basic idea of using cell phone data for estimating
dynamic cell densities per hour block. How suitable are such data to yield good esimates of the
real population densities per hour block? Is the group of persons using cell phones
representative of the entire population? For sure it is not representative of very young and very
old people, as they tend to not use cell phones at all, or in a relatively small percentage of their
respective age groups. Elderly people tend to be less mobile than other age groups. Very young
children tend to be near to (at least one of) their parents.

The next issue that we want to bring forward is the fact that the method is based on active cell
phones. This creates a problem when many people are not actively using their cell phones, for

38) This is in a basic model where we are not supposed to have more technical information about the cells in the network,
in particular about their directionality or about their sensitivity due to objects in their vicinity. If this information is
actually available more realistic models can be developed and applied, as will be indicated below.
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instance during the night, when they are asleep. During the day inactivity of cell phones is more
likely to occcur at any moment, and for any user, but not as massively as during the night.
Therefore this is likely to be less of an issue then.

Perhaps a slightly different approach from the one taken in this paper could be of help, namely
one that starts with a population density at some point in time. And observations of active cell
phones are used to estimate density changes as time progresses.

In fact, using models to estimate the location of previously active cell phones that have been
switched off in some hour block, on the basis of observed mobility, is another interesting and
worthwhile problem to study. The same is true for cell phones that have been switched on or
have entered the country.

In the approach presented only billable information was used, in particular about the time used
for various services. This information was used to compute the presence (i.c. q‐presence) at
cells. The users who answer a call are not taken into account.39) The question is if another,
simpler approach is feasable and attractive, namely one in which all connections made by cell
phones with cells in the network are used, irrespective of whether they are at the sending or
receiving end of calls, that is, whether they concern making calls or being called. Of importance
is only when a link between a cell phone and a cell is made.

In such an approach it may also be interesting to investigate the possibility to ignore the
presence40) of cell phones and only use that a cell phone id in hour block ℎ was connected to
cells 𝑐1, 𝑐2,…, 𝑐𝑘ℎ . Each cell can appear at most once in hour block ℎ. The number 𝑛𝑐,ℎ of
different cell phones connected to cell 𝑐 and for hour block ℎ from the basis of the cell frequency
of hour block ℎ in this approach. The cell density flow could be handled in a similar way as in the
present paper.

When several location methods of cell phones have been implemented it is possible to compare
the resulting estimates of dynamic population densities, investigate possible differences, and
identify the best method among the competing ones.

In the present paper we assume that there was only one telecom provider supplying all cell
phone data. In practice it is probably preferable to use data from several telecom providers.
These data may then be pooled (after some preprocessing) thus increasing the volume of data to
be used. And the results for the various providers may be compared. And it will become clear
whether different telecom providers have different types of customers with different use of their
smartphones, different mobility patterns and different types of places that they tend to spend
their time.

Another issue concerns the Voronoi polygons. Above it was suggested that always entire
polygons are used in the computations. This, however, is only the case for interior cells. For
boundary cells the situation is somewhat different. And it even matters whether these boundary
cells are terrestrial cells or near the coast. And it may be necessary to use boundary cells from
neighbouring countries (Belgium and Germany, in the case of The Netherlands, which was taken
as the example country in the present paper). Boundary cells near the coast are treated

39) It was argued in Section 3.1 that in case of asynchronous communication (e.g. text messages) this is not a problem.
40) As defined in Section 2.4.
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differently, namely by truncating them and consider only the parts that cover land. The idea is
that the parts that cover water (the sea, actually) contain very few, if any, (active) cell phones.

Yet another subject for future research concerns the length of the time blocks. We have chosen
hour blocks in the present paper, following [2]. They seem to be rather long. It is of interest to
investigate whether shorther time blocks are feasible, particular in view of possible compromise
of privacy. Of course, it is also the question how much detail is needed for statistical purposes.
There is no sense in using time windows that are too short. So the question arises which size of
the time window is optimal.

It should be stressed that a key characteristic of the model used is that actual routes followed by
cell phones (at the cell level) cannot be used, due to the anonimity of the cell phones. There is a
shift from individual cell phones to a collective of anonymous cell phones. The flow of this ‘mass’
is described by an inhomogeneous Markov chain, with a Markov matrix for each pair of
consecutive hour blocks. This process is comparable to generalized diffusion process, where
transition probabilities may change over time. As hour blocks are used, each moving and active
cell phone is represented by a density of cell locations. The total presence per cell is the sum of
the presences of all the cell phones active in that cell at a particular hour block. Evidently it is
impossible to identify any cell phone (and hence its user).

In the approach taken in the present paper it was assumed that no specifics about the cells are
known concerning their sensitivity. This was done for simplicity, to create a base model that can
be applied straightforwardly. However, if information about the sensitivity of cells is available, in
particular about the sensitivity areas of each cell, the model could be adapted to this situation.
How this can be done is illustrated in Appendix F.

Another line of research would be to investigate whether data on cell phones that are switched
on but not necessarily active could be used to produce estimates of population densities.
Whether such data will be made available by telecom companies remains to be seen. These data
are also not perfect. The risk using them is that a cell phone and its user happen to be at
different locations. Think of a person who, in the evening, quickly visits a supermarket in his
neighbourhood, leaving his cell phone at home. The question is, if it happens a lot that a cell
phone and its user are separated, and also how much they are separated. But when asleep it is
likely that the separation between the two is small. So for the evening such data would probably
be great in estimating the locations of smart phones. They are also very useful to check if these
data, as well as the data derived from active cell phones, give similar density estimates. They
have the great advantage that they also provide location information for cell phones that were
not active, but only switched on. And they can be used to distinguish for border cells, whether a
cell phone has been switched off or on, or whether the cell phone left or entered the country. It
is not necessary to use these data in the original frequency that they were generated. The
frequency could be a lot lower and then would still produce useful information.
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Appendix
A Fictitious example data

In this appendix we present (entirely fictitious) example data to illustrate some points in the text.
The data are presented in Table A.1. It is a table where the rows consist of records with
information about clients/users (column id𝑖) that have been active on their phone in hour block
ℎ or ℎ + 1 when their signals were picked up by cells (c𝑗) and spending a certain amount of time
(p𝑖,𝑗 , which is a fraction of an hour). These data are supposed to be produced from even more
basic data, source data generated from elementary events on the mobile telephone network:
when an activity started, when it finished, which cells were involved. The data in Table A.1 are
supposed to be derived from the source data by the telecom provider. They are not supposed to
be shared with anybody else, in particular the statistical office. These data are sensitive, since
they potentially could be linked to individuals. They serve in turn as a source of data for the
statistical office: about densities per hour block, about linking of cells, and about the flow of
‘population mass’ through the cells network. In Sections 4, 8 and 9 it is shown how these data
are used for various computations concerning dynamic population densities.

The variables ‘cell’ and ‘id’ can be viewed as secondary keys (in the language of relational
database theory). This means that there are separate tables with details about each cell (like
location, and technical information) and about each client (like name, address, bank account
number, etc). But this information is of no use here. In fact the id’s used are only needed to
combine information from the same users. The id’s should distinguish them. Therefore they
need not be the original keys but they can be surrogate keys.41) In fact, the keys ‘id’ need not be
the same throughout but they can depend on the pair ℎ and ℎ + 1 of hour blocks. To stress this
we could write idℎ,ℎ+1𝑖 to indicate the dependence of the keys (identities) on the pair of
consecutive hour blocks ℎ and ℎ + 1. But as this involves purely the internal working of the
telecom provider, we abstain from providing such details. They are not necessary to produce the
data we are interested in. They are only an extra precaution for the safe internal handling of
these data by the telecom provider. Note that with such (surrogate) keys it is impossible to track
users for periods longer than two hours. If the telecom provider would take the trouble of using
such dedicated surrogate keys, they would only increase the internal safety of the internal
handling of sensitive data. It would be good general policy of the telecom provider if access to
client data is only granted to employees who need them for their work. Data that employees do
not need for this purpose should not be accessible to them.

Table A.1 is complete as to the activities on the cell phones in hour blocks ℎ and ℎ + 1. However,
not all cell phones were used in these hour blocks. In hour block ℎ cell phones with the identities
id2, id4, id7, id9 and id10 were not active. In hour block ℎ + 1 the same is true for the cell phones
with the identities id1, id4, id7, id9 and id10. We see different patterns:

– id1 is active in hour block ℎ but not in hour block ℎ + 1.
– id2 is active in hour block ℎ + 1 but not in hour block ℎ.
– id3 is active in both hour blocks ℎ and ℎ + 1.

41) If Ω is the set of original keys and Σ is a set of surrogate keys then |Ω| = |Σ|, so they are equal in size, and there is a
bijection 𝜅 ∶ Ω → Σ.
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– id4 is not active in both hour blocks ℎ and ℎ + 1.

rec h bl cell id q‐pr rec h bl cell id q‐pr
1 h c1 id1 0.67 21 h+1 c6 id11 0.78
2 h c2 id3 0.19 22 h+1 c6 id12 0.15
3 h c2 id5 0.08 23 h+1 c7 id12 0.48
4 h c3 id5 0.25 24 h+2 c2 id1 0.38
5 h c3 id6 0.33 25 h+2 c2 id2 0.21
6 h c4 id6 0.21 26 h+2 c3 id4 0.19
7 h c4 id8 0.14 27 h+2 c4 id5 0.41
8 h c5 id8 0.13 28 h+2 c5 id6 0.14
9 h c6 id8 0.21 29 h+2 c5 id7 0.12
10 h c6 id11 0.49 30 h+2 c7 id8 0.13
11 h c6 id12 0.16 31 h+2 c7 id9 0.63
12 h c7 id12 0.71 32 h+2 c1 id9 0.26
13 h+1 c1 id2 0.18 33 h+2 c1 id10 0.47
14 h+1 c2 id2 0.63 34 h+2 c2 id11 0.19
15 h+1 c3 id3 0.72 35 h+2 c3 id11 0.22
16 h+1 c3 id5 0.23 36 h+2 c4 id11 0.23
17 h+1 c4 id5 0.29 37 h+2 c5 id12 0.11
18 h+1 c4 id6 0.13 38 h+2 c6 id12 0.16
19 h+1 c4 id8 0.24 39 h+2 c7 id12 0.15
20 h+1 c6 id8 0.11

Table A.1 Records (rec) of active cell phones (id) at cells (cell) in three consecutive
hour blocks (h bl) and their q‑presence (q‑pr).

From these data the telecom provider can compute, for each client, the total amount of time
they spent using the telecom facilities per hour block. This is important billing information for the
telecom provider, but it is of no importance for the application that we are interrested in in the
present paper.

Instead for our application the q‐presence (q‐pr) is important. In each record in Table A.1 a q‐pr
is linked to a cell in an hour block (ℎ or ℎ + 1). It is possible to compute a few quantities that are
of interest to our approach:

1. total q‐presence per cell.
2. cell link data.
3. cell flow information.

We now define each of these variables. Let the q‐presence of (q‐pr) cell phone id𝑗 at cell 𝑐𝑖 in
hour block ℎ be denoted by q‐pr(𝑐𝑖 , ℎ, id𝑗) and the total q‐presence in hour block ℎ at cell 𝑐𝑖 by
𝜏(𝑐𝑖 , ℎ). Then

𝜏(𝑐𝑖 , ℎ) =
id𝑗

q‐pr(𝑐𝑖 , ℎ, id𝑗). (A.1)

So for instance, if we consider cell 𝑐2 and hour block ℎ + 2, then we find, using Table A.1, that
cell phones id1, id2 and id11 were active, so that the total presence equals
𝜏(𝑐2, ℎ + 2) = 0.38 + 0.21 + 0.19 = 0.78.
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The cell link data are about the interconnection of cells as a result of moving cell phones that are
active in consecutive hour blocks ℎ and ℎ + 1. We again derive this information from Table A.1.
In fact, this information leads to a digraph, the cell link digraph, in which the nodes are the cells
and links denote ordered pairs of cells (𝑐, 𝑑) such that there was at least one cell phone id𝑘 and
hour block ℎ such that id𝑘 was active at cell 𝑐 in hour block 𝑘 and in cell 𝑑 in hour block ℎ or
ℎ + 1. What matters is the fact that 𝑑 can be reached from 𝑐 in the same hour block or the one
immediately following. Unimportant here is how long id𝑘 was active in cell 𝑐 or 𝑑, as long as this
was time > 0 (or, alternatively, q‐pr> 0) for both cells. For instance cell phone id5 in Table A.1 is
active at cells 𝑐2 and 𝑐3 in hour block ℎ and in cell 𝑐3 and 𝑐4 in hour block ℎ + 1. Therefore we
have the arcs {𝑐2, 𝑐3}, (𝑐2, 𝑐4), (𝑐3, 𝑐3), {𝑐3, 𝑐4} for the link digraph in our example.42)

Note that we have assumed that cell 𝑐3 can be reached from 𝑐2, and vice versa, in one hour
block. The same is true for cell 𝑐3 and 𝑐4. Strictly speaking we cannot deduce this from the data
as we have no information about the order in which cell phone id5 was active in the cells. It is
possible that 𝑐2 can be reached from 𝑐3 within one hour block (or also including the next one)
but not the other way round. But as we have no information about this, we assume that the
most optimistic scenario about the reachability of cells is actually the case.

Note also that we have generated the loop (𝑐3, 𝑐3). This is only because the cell 𝑐3 was active in
different hour blocks, i.c. ℎ and ℎ + 1.

Finally we consider the cell flow information. In this case the presence of cell phones in cells is
also of no importance, except that both should be nonnegative. We take an arc (𝑐, 𝑑) of the cell
link digraph that we have just considered. We now look for all cell phones id𝑘 in Table A.1 that
are active at cell 𝑐 in hour block ℎ and also active at cell 𝑑 in hour block ℎ or hour block ℎ + 1.
Then a measure of the size of the flow from 𝑐 to 𝑑 is the number of such cell phones, making the
move between hour block ℎ and hour block ℎ + 1. We can represent this flow information by
putting these flow numbers 𝜈ℎ𝑐𝑑 ∈ ℕ0 as tags to the corresponding arcs (𝑐, 𝑑). They can be
stored collectively in a flow matrix

Φℎ
𝐶 = ቌ

𝜈ℎ11 ⋯ 𝜈ℎ1𝑛
⋮ ⋱ ⋮
𝜈ℎ𝑛1 ⋯ 𝜈ℎ𝑛𝑛

ቍ . (A.2)

From matrix (A.2) we can produce the Markov matrix

𝑀ℎ
𝐶 = ቌ

𝜈ℎ11/𝜈ℎ1⋅ ⋯ 𝜈ℎ1𝑛/𝜈ℎ1⋅
⋮ ⋱ ⋮

𝜈ℎ𝑛1/𝜈ℎ𝑛⋅ ⋯ 𝜈ℎ𝑛𝑛/𝜈ℎ𝑛⋅
ቍ = ቌ

𝑓ℎ11 ⋯ 𝑓ℎ1𝑛
⋮ ⋱ ⋮
𝑓ℎ𝑛1 ⋯ 𝑓ℎ𝑛𝑛

ቍ , (A.3)

where 𝜈ℎ𝑖⋅ = ∑𝑛𝑗=1 𝜈𝑖𝑗 and 𝑓ℎ𝑖⋅ = 1, for 𝑖 = 1,… , 𝑛. See also Section 9.1.

42) It should be stressed that {𝑎, 𝑏} = {(𝑎, 𝑏), (𝑏, 𝑎)}.
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B Geometric smoothing

In this appendix we discuss some methods that can be used to produce Voronoi densities from
cell densities, where cells are represented as dots in a map. Or they can be used to smooth cell
densities. Or to smooth Voronoi densities, in case they are used to produce pictures of densities
that hide the details of Voronoi partitions and thus provide a more gently, flowing picture. We
also remark that this smoothing is a linear transformation when applied to densities on maps, in
which we are particularly interested.

B.1 Nearest‑neighbour interpolation

Suppose that 𝑛 points 𝑝1, … , 𝑝𝑛 in the plane are given, and values 𝑦1, … , 𝑦𝑛 in 𝑝1, … , 𝑝𝑛,
respectively. A simple interpolation method is based on the Voronoi partition induced by the 𝑝𝑖.
For Voronoi polygon 𝑉𝑝𝑖 associated with 𝑝𝑖 we assume that the value of the interpolant is
constant and equal to 𝑦𝑖. So clearly the interpolating function is locally constant (on each
Voronoi polygon) and is likely to be discontinuous if neighbouring Voronoi polygons have
different associated 𝑦‐values. So in general we may expect an interpolant that is not continuous.

A variant of nearest‐neighbour interpolation that we use in the present paper to obtain Voronoi
densities from cell densities is as follows. The value for Voronoi polygon 𝑉(𝑝𝑖) associated with
𝑝𝑖, the location of cell 𝑐𝑖, is 𝑦𝑖/|𝑉𝑝𝑖 | (instead of 𝑦𝑖), where |𝑉𝑝𝑖 | denotes the area of 𝑉𝑝𝑖 . Thus the
‘density mass’ 𝑦𝑖 is preserved, being evenly distributed evenly over 𝑉𝑝𝑖 . See Section 6.2. Of
course, one can view this operation as a combination of two operations: nearest neighbour
interpolation followed by an adjustment for each value associated with a Voronoi polygon.

B.2 Natural neighbour interpolation after Sibson and after Laplace

The form of the interpolating function 𝐺 ∶ ℝ2 → ℝ\ℝ− that we consider here is as follows:

𝐺(𝑥) =
𝑛


𝑖=1

𝑤𝑖(𝑥)𝑓(𝑝𝑖), (B.1)

where 𝑝𝑖 ∈ ℝ2 for 𝑖 = 1,… , 𝑛.

Natural neighbour interpolation (NNI)43) is a method to create smoother functions than nearest
neighbour interpolation produces. NNI in turn is a natural extension of this interpolation
method. For each point 𝑥 for which one wants to compute the value of the interpolated function
one adds 𝑥 to the list of generators 𝓁(𝑝)𝑖, for 𝑖 = 1,… , 𝑛, where 𝓁 is as defined in (10). This
creates a Voronoi polygon 𝑉𝑥 associated with 𝑥, which intersects with some of the Voronoi
polygons of the original Voronoi partition.

43) The discussion presented here is based on https://en.wikipedia.org/wiki/Natural_neighbor_
interpolation and the pictures shown are also taken from this site.
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In Figure B.1 the green coloured circular areas represent the interpolation weights. The
purple‐shaded region is the new Voronoi polygon, after inserting the point to be interpolated
(the black dot). The weights represent the intersection areas (relative to the area of 𝑉𝑥) of the
purple‐polygon with each of the seven surrounding cells. The value of the interpolating function
at 𝑥 is the weighted sum of the values of the original function at the original generators of the
Voronoi partition. This interpolation method is called ‘Sibson interpolation’, after the author of
[10], where this method is proposed.

Symbolically a Sibson weight can be expressed as

𝑤𝑆
𝑖 =

|𝑉𝑝𝑖 ∩ 𝑉𝑥|
|𝑉𝑥|

, (B.2)

where | ⋅ | denotes the area function.

Figure B.1 Natural neighbour interpolation with Sibson weights.

The weights used for interpolating can also be obtained in a different way, which is possibly
computationally more efficient, namely by using the distances 𝑑(𝑥, 𝑝𝑖) of 𝑥 to each of generators
of the Voronoi polygons with a non‐empty intersection with 𝑉𝑥. In Figure B.2 the interface
between the polygons linked to 𝑥 and 𝑝𝑖 is in blue (and of the length 𝑙(𝑝𝑖)), while the line
segment connecting 𝑥 and 𝑝𝑖 is in red (and of length 𝑑(𝑥, 𝑝𝑖)). 𝑙(𝑝𝑖) and 𝑑(𝑥, 𝑝𝑖) can be used to
compute so‐called Laplace weights (cf. [1] and [3]). Symbolically a Laplace weight can be
expressed as

𝑤𝐿
𝑖 =

𝑙(𝑝𝑖)/𝑑(𝑥, 𝑝𝑖)
∑𝑛𝑘=1 𝑙(𝑝𝑘)/𝑑(𝑥, 𝑝𝑘)

. (B.3)

Figure B.2 Natural neighbour interpolation with Laplace weights.
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B.3 Smoothing cell densities

In the present section we consider a different smoothing technique, not carried out on densities
defined on geometrical structures like Voronoi polygons, but directly at the cell level. The
methods developed in the present paper can then be used to represent these smoothed values.
The Voronoi polygons generated by the cell locations are used to define neighboring cells. Let 𝑐
be a cell and 𝑉𝑐 its Voronoi polygon, then we define𝒩1

𝑐 as its (direct) neighborhood. It consists
of Voronoi polygons 𝑉 that border 𝑉𝑐, in the sense that 𝑉𝑐 and 𝑉 have a line segment44) in
common. This means that 𝑉𝑐 ∩ 𝑉 is a line segment. If the intersection consists of only a point
then 𝑉𝑐 and 𝑉 are not bordering. The superscipt 1 applies to the fact that we are dealing with
Voronoi polygons at distance 1, which means that they are direct neighbours. Using this notation
we can define𝒩𝑝

𝑐 with 𝑝 = 0, 1, 2, …. We define𝒩0
𝑐 to consist of 𝑉𝐶 only. 𝒩2

𝑐 consists of those
Voronoi polygons that border the polygons in𝒩1

𝑐 insofar they are not in𝒩1
𝑐 or in𝒩0

𝑐 . Likewise,
𝒩3
𝑐 consists of Voronoi polygons bordering those in𝒩2

𝑐 insofar they are not in𝒩0
𝑐 ,𝒩1

𝑐 or𝒩2
𝑐 .

Likewise for larger values of 𝑝.

We can describe the neighbourhood structure on the set of Voronoi polygons by a 𝑛 × 𝑛
adjacency matrix A𝑉 = (a𝑖𝑗) or by an 𝑛 × 𝑛 incidence matrix I𝑉 = (i𝑘𝑙). The entries of A𝑉 are
indexed by Voronoi polygons 𝑖 and 𝑗. The entries of I𝑉 are indexed by neighbourhoods𝒩𝑘 and
Voronoi polygons 𝑉𝑙. We have

a𝑖𝑗 = ቊ 0 ∶ if 𝑉𝑖and 𝑉𝑗are not neighbours,
1 ∶ if 𝑉𝑖and 𝑉𝑗are neighbours. (B.4)

and

i𝑘𝑙 = ቊ 0 ∶ if 𝑉𝑙 ∉ 𝒩𝑘 ,
1 ∶ if 𝑉𝑙 ∈ 𝒩𝑘 . (B.5)

It should be stressed that the adjacency matrix A𝑉 is different from that of the cell link digraph,
as presented for a toy example in Table 8.5. The corresponding (di)graphs have the same set of
vertices (namely the set of cells) but the set of arc/edges are defined differently.

Once the neighbourhoods for the Voronoi polygons have been identified, we consider the cells
that are the generators of the Voronoi polygons in each neighbourhood. So if

𝒩𝑉𝑐 = {𝑉𝑐𝑖1 , … , 𝑉𝑐𝑖𝑡 } (B.6)

is such a neighbourhood then we are interested in the set {𝑐𝑖1 , … , 𝑐𝑖𝑡}, the generators of the
Voronoi polygons in𝒩𝑉𝑐 . The idea is now to average the values of the vector of densities 𝑓ℎ𝐶 for
each of these neighbouring cells and assign the computed average to the 𝑐, the cell with
neighbourhood𝒩𝑉𝑐 . This averaging can be done in various ways. For instance one can use the

44) Corresponding to an edge defining the boundary of Voronoi polygons.
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idea underlying Kriging, a method used in geostatistics, where a convex combination of the
values (in our case, of population densities for hour blocks) in a neighbourhood is taken, in such a
way that its variance is minimized.45) Or one could weigh each value by the reciprocal of its
(estimated) variance. At any rate, this provides us with a Markov matrix ℛ that describes the
averaging per neighbourhood. A smoothed version of the density 𝑓ℎ𝐶 for hour block ℎ using this
matrix is denoted by �̃�ℎ𝐶 , where

�̃�ℎ𝐶 = ℛ′𝑓ℎ𝐶 , (B.7)

where ‘ denotes transposition, as elsewhere in this paper.

The methods described above can also be applied to �̃�ℎ𝐶 instead of to 𝑓ℎ𝐶 .46) The smoothing using
ℛ can be repeated several, say 𝑘, times, if desired. We then obtain

̃�̃�ℎ,𝑘𝐶 = (ℛ′)𝑘𝑓ℎ𝐶 . (B.8)

One would expect to choose small values of 𝑘, such as 2 or 3, to obtain double or triple
smoothing. A priori there is no obvious argument why this multiple smoothing would be
necessary. It is only mentioned to point out that it is possible.

B.4 Averaging over circular neighbourhoods of points

Apart from the interpolation method considered in Sections B.1 and B.2 we want to mention one
here that is not particularly geared at Voronoi polygons but is of a more general nature. In a
sense it is the embodiment of smoothing of a function 𝑓 at a point 𝑥 in its domain: replace the
value 𝑓(𝑥) at 𝑥 by the average of the values in a neighbourhood of 𝑥 and divide by the size of
this neighbourhood. As a neighbourhood we can take a disk 𝐵𝑟(𝑥) with radius 𝑟 > 0 and center
𝑥, in case the domain of 𝑓 is ℝ2 or a subset 𝐿 thereof. In order to avoid problem at points near
the border of 𝐿, we consider 𝐵𝑟(𝑥) ∩ 𝐿. We then define a smoothed version of 𝑓 ∶ 𝐿 → ℝ as

̄𝑓𝑟(𝑥) =
1

|𝐵𝑟(𝑥) ∩ 𝐿|
න
𝐵𝑟(𝑥)∩𝐿

𝑓(𝑦) 𝑑𝜇(𝑦), (B.9)

where 𝜇 is a suitable measure on 𝐿 ⊆ ℝ2.47) Of course, if 𝑥 is sufficiently removed from the
boundary of 𝐿 we have 𝐵𝑟(𝑥) ∩ 𝐿 = 𝐵𝑟(𝑥). If 𝐿 is bounded and 𝑟 is sufficiently big, namely such
that 𝐵𝑟(𝑥) ⊇ 𝐿, then ̄𝑓𝑟 is a constant function.

It is clear that the effect of applying this smoothing is that it removes extremes in a function 𝑓. If
applied repeatedly it will result in a constant function. If applied to a probability density it will

45) The method is named after Danie Krige from South Africa. For a description of Kriging see e.g. [4].
46) With the possible exception of themethod for smoothing Voronoi densities, using the operator 𝒮 (see (36)), if smooth‐

ing twice is not wanted.
47) Such as a Riemann or a Lebesgue measure.
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increase the entropy and produce a distribution ̄𝑓𝑟 that is flatter and that tends to a uniform
distribution (which exists, as 𝐿 is bounded).48)

Clearly, (B.9) is a linear transformation. To stress that a linear transformation was used we write
Ξ𝑠𝑓 instead of ̄𝑓𝑟.49) We have

Ξ𝑠(𝜆1𝑓1 + 𝜆2𝑓2) = 𝜆1Ξ𝑠(𝑓1) + 𝜆2Ξ𝑠(𝑓2), (B.10)

where 𝜆1, 𝜆2 ∈ ℝ.

The interpolation methods presented in Sections B.1 and B.2 can be described as linear
transformations of the input functions.

If we are dealing with densities it should be noted that they form a convex set and not a linear
space: if 𝑓1 and 𝑓2 are densities and 𝜆1, 𝜆2 ≥ 0 such that 𝜆1 + 𝜆2 = 1 then 𝜆1 𝑓1 + 𝜆2 𝑓2 is also a
density. (B.10) interpreted in this context shows that the smoothed version of a density that is a
convex combination of two densities, is a convex combination of the smoothed versions of the
component densities, with the same convex weights.50)

48) If the goal is to obtain a density from the smoothing of a density by applying (B.9) then a normalisation may be neces‐
sary, so that the integral (or sum) of the resulting function over its domain equals 1.

49) This notation discards the parameter 𝑟 that has been used, not to mention 𝐿, the distance function used to measure
the radius of the disk, the measure used for integration, that all play a role. In the present context these things are
details.

50) If 𝑓 is a density Ξ𝑓may not be, as all its value added up (or integrated over its demain) need not be unity. We assume
that this total (or integral) is finite and be equal to𝑁(Ξ𝑓) < ∞. Then Ξ𝑓/𝑁(Ξ𝑓) is a density.
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C Diffusion

Through the process of diffusion we can get more insight into the spread of the cell phones over
the country during the observation period. We only observe cell phones changing location via
the cells in which they are active. We consider diffusion processes for continuous and discrete
space and continuous and discrete time (four combinations in total). In our case we are dealing
with discrete time (hour blocks) and discrete space (defined by the cells). Via diffusion there is a
link with heat in physics (i.c. thermodynamics).

The purpose of this appendix is to link the problem of cell phone spread with a comparable
phenomenon studied in physics. Heat diffusion in a piece of matter and spread of cell phones
over an area can be viewed as similar phenomena, at least superficially. Looking at both
processes more closely, there are differences: the cell phone population is open, whereas heat is
preserved in a closed system.51)

We first look at the traditional physical setting, which uses continuous time and continuous
space, then at the setting with continuous time and discrete space, to arrive at the setting where
both parameters are discrete. This later setting is suitable for the problem considered in the
present paper.52)

The data provided by the telecom provider only contains data on nonidentifiable (anonymous)
cell phones. However we suppose it does contain ‘link data’, that is, data that indicate how active
cell phones in the vicinity of a cell, in a particular hour block, may spread to neighbouring cells in
the next hour block. This yields transition probabilities between cells, entries in Markov matrices.
As these transition probabilities are likely to vary over time, we are dealing with nonstationary
Markov chains and hence Markov matrices that are time dependent, that is, they depend on
hour block ℎ in our case.

C.1 Continuous space and time

We start with the equation that describes diffusion in case time and space are both continuous:

𝜕𝑢
𝜕𝑡 = div𝐷 ∇𝑢 = ∇ ⋅ 𝐷∇𝑢, (C.1)

where 𝑢(𝑡, 𝑥) is a smooth function in time 𝑡 and space 𝑥 = (𝑥1, 𝑥2). In (C.1) ‘div’ is the
divergence, ∇ the gradient and 𝐷(𝑡, 𝑥) a function that regulates the speed of the diffusion at
time 𝑡 and at location 𝑥 = (𝑥1, 𝑥2). If the medium in which the diffusion takes place is

51) That is, if we consider equilibrium thermodynamics. Comparison with nonequilibrium thermodynamics is more apt.
But this is a more complicated subject, that we wish to avoid. Dealing with it would miss the point of the present
appendix: to draw attention to a classical subject in physics to develop a feeling for a key problem in the present
paper.

52) The case with discrete time and continuous space would also be of interest if we would study the development of
smoothed Voronoi densities. However, we only suggest to use these densities visually, not numerically, in the present
paper.
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homogeneous, 𝐷 is a constant function with value 𝐷0 > 0. In this case (C.1) reduces to the
so‐called heat equation:

𝜕𝑢
𝜕𝑡 = 𝐷0 ∇ ⋅ ∇𝑢 = 𝐷0 Δ𝑢, (C.2)

where Δ = ∇ ⋅ ∇ is the Laplace operator. If we write (C.2) in terms of cartesian coordinates, we
obtain

𝜕𝑢
𝜕𝑡 = 𝐷0 ቆ

𝜕2𝑢
𝜕𝑥21

+ 𝜕2𝑢
𝜕𝑥22

ቇ . (C.3)

Equations (C.2) or (C.3) are linear partial differential equations. This means that if we have two
solutions 𝑢1 and 𝑢2 so is any linear combination 𝜉1𝑢1 + 𝜉2𝑢2, for 𝜉1, 𝜉2 ∈ ℝ. We can interpret
equations (C.2) or (C.3) as describing the spread of a particle determined by the coefficient 𝐷0.

For more on the heat equation see e.g. [12].

For the present paper it seems to be appropriate to assume that 𝐷 is not a constant function, but
one that depends on time (t) but not on space 𝑥. The reason is that we have observations for
transition probabilities for each hour block to the next. Dependence of 𝐷 on 𝑥 is not readily
available and probably fairly complicated to determine or estimate.

C.2 Discrete space and continuous time

We now switch to discrete analogs of concepts of diffusion and heat exchange in Euclidean space
(ℝ × ℝ2 ≃ ℝ3) to those concepts defined on (di)graphs, where the nodes can be viewed as
representing cells. For the moment, we still assume the time parameter to be continuous (that is,
with values in ℝ).

We start with an example. In Figure C.1 part of a graph 𝐺 = (𝑉, 𝐸) is shown. More in particular
the neighbourhood of a vertex 𝑖 and 𝑗1, … , 𝑗5 ∈ 𝑉 adjacent to 𝑖, that is, such that {𝑖, 𝑗1}, … ,
{𝑖, 𝑗5} ∈ 𝐸. We write 𝑖 ∼ 𝑗𝑘, for 𝑘 = 1,… , 5, to indicate that 𝑖 and the 𝑗𝑘 are adjacent vertices. In
the context of the application in the present paper this means that we are looking at cells 𝑖, 𝑗𝑘
active in hour blocks ℎ and ℎ + 1, as a result of a moving cell phone that is active at cell 𝑖 in hour
block ℎ and at cell 𝑗𝑘 in hour blocks ℎ or ℎ + 1.

Now we consider the change of the value 𝑢𝑖 at the red vertex 𝑖 in Figure C.1. The changes in this
vertex over time can only result from inflow from or outflow to adjacent vertices. If we assume
that for each edge {𝑖, 𝑗𝑘} there is a parameter 𝐷𝑖𝑗𝑘 regulating the flow, such that 𝐷𝑖𝑗𝑘 = 𝐷𝑗𝑘𝑖, we
obtain

𝑑𝑢𝑖
𝑑𝑡 =

5


𝑘=1

𝐷𝑖𝑗𝑘(𝑢𝑖 − 𝑢𝑗𝑘) = 𝒟𝑖 𝑢𝑖 −
5


𝑘=1

𝐷𝑖𝑗𝑘𝑢𝑗𝑘 , (C.4)
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𝑖

𝛼
𝑗2

𝑗3

𝑗4
𝜔

𝑗1

𝑗5

Figure C.1 A cell 𝑖 (red) and the cells 𝑗1, … , 𝑗5 (black) that can be reached from it
(leaving out a loop). The vertex 𝛼 (blue) – the source – symbolizes the virtual location
where cell phones come fromwhen activated. The vertex 𝜔 (brown) – the sink –
symbolizes the virtual location where cell phones move to when deactivated. In fact, 𝛼
and 𝜔 could be identiϐied.

where 𝒟𝑖 = ∑5𝑘=1 𝐷𝑖𝑗𝑘 .53)

If we assume that 𝐷𝑖,𝑗 = 𝐷0, a constant,54) for each edge {𝑖, 𝑗} then (C.4) simplifies to

𝑑𝑢𝑖
𝑑𝑡 = 𝐷0

5


𝑘=1

(𝑢𝑖 − 𝑢𝑗𝑘) = 𝐷0 ቌdeg(𝑖) 𝑢𝑖 −
5


𝑘=1

𝑢𝑗𝑘ቍ . (C.5)

We may assume 𝐷0 = 1 by suitably rescaling the time parameter, so that we finally arrive at

𝑑𝑢𝑖
𝑑𝑡 = deg(𝑖) 𝑢𝑖 −

5


𝑘=1

𝑢𝑗𝑘 . (C.6)

We remark that an expression like (C.6) generalizes to

𝑑𝑢𝑖
𝑑𝑡 = deg(𝑖) 𝑢𝑖 −

𝑗∼𝑖
𝑢𝑗 , (C.7)

which can be written more concisely as

𝑑𝑢
𝑑𝑡 = (𝒟 − 𝐴) 𝑢 = ℒ 𝑢, (C.8)

where 𝑢 = (𝑢1, … , 𝑢𝑛)′, ℒ is the Laplace matrix,55) 𝒟 the degree matrix, which is a diagonal
matrix with the degrees of each of the nodes on the diagonal and the off‐diagonal elements

53) Wehave tacitly assumed that each diffusion parameter𝐷𝑖𝑗𝑘 is constant, to keep the derivation simple, for the purpose
of illustrating the general approach, rather than a more accurate one.

54) This assumption is not necessarily realistic in view of our application, but rather it is convenient for our exposition on
diffusion.

55) Or graph Laplacian
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equal to 0, and 𝐴 is the adjacency matrix of the graph. The Laplace matrix is symmetric, i.e.
ℒ′ = ℒ and positive semi‐definite 𝑢′ ℒ 𝑢 ≥ 0 for all 𝑢 ∈ ℝ𝑛.

The model based on (C.8) is used in [11], Chapter 6, equation (6.2). But, as already remarked, in
our case this does not seem to apply. The diffusion function is not likely to be constant, but
rather roughly cyclic, with a cycle of one day.

We can write the solution to (C.8) as

𝑢(𝑡) = exp (ℒ𝑡) 𝑢(0), (C.9)

where

exp (ℒ𝑡) =
∞


𝑘=0

𝑡𝑘
𝑘! ℒ

𝑘 . (C.10)

In an equilibrium situation56) we have 𝑑𝑢
𝑑𝑡 = 0, so that (C.7) implies that for each node 𝑖 we have

𝑢𝑖 =
1

deg(𝑖) 
𝑗∼𝑖

𝑢𝑗 . (C.11)

Actually (C.11) expresses that the value of 𝑢 at node 𝑖 equals the average of the values of 𝑢 in
each node 𝑗 adjacent to node 𝑖. Functions 𝑢 with this property are called harmonic. In the
continuous case harmonic functions 𝑢 satisfy the classical Laplace equation

Δ𝑢 = 0, (C.12)

which explains the name of its counterpart in the discrete case.

A strict equilibrium state will never be reached (under normal circumstances). A state close to an
equilibrium will be reached during the night when most people sleep and perhaps during the day
when there are the most activities.57)

56) This may be a temporary equilibrium, or near‐equilibrium.
57) Such a state does not exist in case of a vibrant city, full of activity around the clock.
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C.3 Discrete space and time

We now consider the final case, where both time and space is discrete. This is the case that is the
most important one for the present paper. The space is is represented by the set of cells in the
cell network. Time is discrete, or rather, discretized in hour blocks. As a cell phone may be on the
move its signal, when active, may be picked up by several cells during different parts of an hour
block. In that case the mass representing a cell phone during that time period58) is spread
uniformly over these cells. This is assumed to be part of the telecom provider’s intermediate
data for the statistical office (see section 8).

The rest of the story is that of the dynamics of the cell densities and can be found in Section 9.
From thereon several developments can be found in the main text.

58) The proportion of the time (on hour) it was active – its q‐presence –, is distributed over the cells that picked up that
cell phone’s signal.
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D Inactive cell phones andmissing
cell information

In the present appendix we want to consider the idea that inactive cell phones differ from active
ones because their location (in the form of one or more cells) is missing. To remedy this the idea
is to predict the missing locations by using a suitable model. These predictions can in turn be
used to obtain new estimates for the cell densities 𝑓ℎ𝐶 per hour block as well as new estimates for
the Markov matrices𝑀ℎ

𝐶 at the cell level.

We can illustrate our ideas with example data from Appendix A. From Table A.1 we derive Table
D.1 with missing start or goal cells for hour blocks ℎ and ℎ + 1. The statistical office only has the
missing data patterns and their multiplicities, but is ignorant of the cell phones involved.

ℎ ℎ + 1 mult
𝑐1 ‐ 1
‐ 𝑐1 1
‐ 𝑐2 1

Table D.1 Missing data patterns for hour blocks ℎ and ℎ + 1 and their multiplicities
(mult) and the cells (c𝑗) involved. It concerns cell phones active in exactly one of the
hour blocks ℎ or ℎ + 1.

ℎ + 1 ℎ + 2 mult
‐ 𝑐1 2
‐ 𝑐2 1
‐ 𝑐3 1
‐ 𝑐5 1
‐ 𝑐7 1
𝑐3 ‐ 1

Table D.2 Missing data patterns for hour blocks ℎ + 1 and ℎ + 2 and themultiplicities
(mult) and the cells (c𝑗) involved. It concerns cell phones active in exactly one of the
hour blocks ℎ + 1 or ℎ + 2.

From Table A.1 we derive Table D.2 with missing start or goal cells for hour blocks ℎ + 1 and
ℎ + 2. This table is similar to that in Table D.1. So these tables can be dealt with in a similar ways.

In case of Tables D.1 or D.2 it is possible to use the appropiate Markov matrices𝑀ℎ
𝐶 , the Markov

chain for the hour blocks ℎ and ℎ + 1, to impute missing goal cells if the start cells are known. In
case the goal cells are known we can use the reverse Markov matrices to impute the missing start
cells. In both cases a missing at random assumption is used: the conditional distribution of cells
in hour block ℎ + 1, given an observed cell in hour block ℎ, is the same for cell phones that have
been observed in both hour blocks as for cell phones that have been obseved only in hour block
ℎ. (And reversely for hour blocks ℎ and ℎ + 1 interchanged.)

When we look at Table D.1 we see that we have to impute three records: For the first one we
know that the start cell is is 𝑐1. But we do not know the corresponding goal cell. To estimate this
we can use the row of𝑀ℎ

𝐶 that corresponds to this cell. We can then select a goal cell by drawing
a cell using the probabilities in the row in𝑀ℎ

𝐶 that corresponds to 𝑐1. Likewise we can find the
start cell that has cell 𝑐2 as its goal. But then we first have to compute the reverse Markov matrix.
Let𝑀ℎ

𝐶 be the Markov matrix associated with the hour blocks ℎ and ℎ + 1:
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𝑀ℎ
𝐶 = ቌ

𝑚ℎ
11 ⋯ 𝑚ℎ

1𝑛
⋮ ⋱ ⋮

𝑚ℎ
𝑛1 ⋯ 𝑚ℎ

𝑛𝑛
ቍ , (D.1)

where the𝑚ℎ
𝑖𝑗 ≥ 0 and the row sums are all equal to 1. The reverse Markov matrix �̃�ℎ

𝐶 is
defined as follows

�̃�ℎ
𝐶 = ቌ

𝑚ℎ
11/𝑚ℎ

⋅1 ⋯ 𝑚ℎ
𝑛1/𝑚ℎ

⋅1
⋮ ⋱ ⋮

𝑚ℎ
1𝑛/𝑚ℎ

⋅𝑛 ⋯ 𝑚ℎ
𝑛𝑛/𝑚ℎ

⋅𝑛
ቍ . (D.2)

This matrix is the transpose of𝑀ℎ
𝐶 , where also each entry in row 𝑖 is divided by the column sum

of column 𝑖 of𝑀ℎ
𝐶 . Note that the rows of �̃�ℎ

𝐶 all add to 1 and the entries are all nonnegative.
Hence �̃�ℎ

𝐶 is a Markov matrix.

Referring to Table D.1 we can use �̃�ℎ
𝐶 to draw a cell that could have been the start cell for hour

block ℎ with 𝑐2 as the goal for hour block ℎ + 1: use the row of this matrix as the distribution for
the possible goal cells, and draw a cell. Impute this as the start cell with 𝑐2 as the goal cell.

If we now look at Table D.2, we face similar problems as in case of Table D.1: five cells (𝑐1, 𝑐2, 𝑐3,
𝑐5, 𝑐7) for which start cells have to be generated and a single cell (𝑐3) for which a goal cell has to
be drawn. This time we need to use𝑀ℎ+1

𝐶 and �̃�ℎ+1
𝐶 instead of𝑀ℎ

𝐶 and �̃�ℎ
𝐶 , respectively. Note

that the start cells also add to the cell density 𝑓ℎ. And, of course, these imputations imply a
change of �̃�ℎ+1

𝐶 as well.

It should be stressed that the missing data problem that we consider here has to be dealt with
for each consecutive pair of hour blocks, independently of each other. This may result in
transitions that are incompatible in the sense that the goal cell of the first transition (concerning
hour blocks ℎ and ℎ + 1) is not the same as the start cell of the second transition (concerning
hour blocks ℎ + 1 and ℎ + 2). We do not have the identities of the cell phones, so we may very
likely create a situation that is different from the one originally observed: two transitions that
cannot have been made by a single cell phone, as was originally the case. But the statistical office
does not have the information to check this.59)

An example60) of this situation is found in Tables 8.1 and 8.2: we find that cell phone id1 is active
in all three hour blocks ℎ, ℎ + 1 and ℎ + 2. The location at ℎ + 1 of this cell phone is missing. But
in the approach we described above we impute its goal cell when we consider the hour block
pair ℎ and ℎ + 1, and its start cell when we deal with the hour block pair ℎ + 1 and ℎ + 2. These
imputations are made independently of each other and therefore may result in different cells.
But because we deal with a single cell phone there should actually be a single location in hour
block ℎ + 1. In our approach such ‘mistakes’ are unavoidable.

59) The telecom provider would be in the position to do this. But we assume that this party is not involved in the process
described here.

60) In fact the only one!
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If the imputations described above are repeated several times – in a bootstrap procedure – it
yields independent estimates of the densities 𝑓ℎ𝐶 and Markov matrices𝑀ℎ

𝐶 , and hence gives an
idea of the sensitivity of the estimates. Of course, these estimates can be averaged to imply yet
another estimate of these quantites, one with a higher precision.
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E Adjustment problem for Markov
matrices and cell densities

Here we discuss a problem with the identities (37), for ℎ = 1,… , 23, the number of consecutive
hour blocks in the observation window of a full day, consisting of 24 hour blocks. The problem is
due to the fact that the densities have been measured in one way (using total presence derived
from cell phone activity) whereas the directions in which the cell phones (and their users) are
moving is conditional on where they are. Therefore the densities and the Markov matrices can
be considered as independent variables, so that it is most likely that (37) does generally not hold
exactly, only approximately. In fact, this is an interesting situation, as this phenomenon will be
observed even if there are no measurement errors. This is not what typically happens in practice
when constraints are violated.

We start combining the equalities (37), for ℎ = 1,… , 23, into a single matrix equation:

൮
𝑓2𝐶
𝑓3𝐶
⋮
𝑓24𝐶

൲ = ൮
𝑀1 0 ⋯ 0
0 𝑀2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑀23

൲

′

൮
𝑓1𝐶
𝑓2𝐶
⋮
𝑓23𝐶

൲ (E.1)

As a shorthand for (E.1) we introduce

f2 = M
′
f1 (E.2)

where

f1 = (𝑓1𝐶 , … , 𝑓23𝐶 )′,
f2 = (𝑓2𝐶 , … , 𝑓24𝐶 )′, (E.3)

andM is the untransposed matrix in (E.2). Note thatM is a Markov matrix, so that holds

M ≥ 0
M 𝜄23𝑛 = 𝜄23𝑛 , (E.4)

where 24 is the number of hour blocks in the observation period𝑊, 𝑛 is the number of cells and
𝜄𝑘 is the all ones column vector of length 𝑘 (see (8)).

In fact (E.1) does represent the ideal situation. In practice it is likely that

̂f2 ≠ M̂ ̂f1, (E.5)
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where ̂f1, ̂f2 and M̂ are ‘measured’ quantities.

The idea to remedy this is to change ̂f1, ̂f2 and M̂ iteratively in such a way that (E.2) holds, with as
little modifcation of the original values as possible. Of course, this only has a meaning if metrics
are introduced to measure the distance of vectors and matrices. We assume Euclidean metrics
𝑑𝑘(⋅, ⋅) for the vectors and matrices (with appropriate 𝑘), generalizing 𝑑2(⋅, ⋅) in (15).

Because ̂f1 and ̂f2 have a considerable overlap, we rather look at the vector f = (𝑓1𝐶 , … , 𝑓24𝐶 ) and
proxies such as ̂f = ( ̂𝑓1𝐶 , … , ̂𝑓24𝐶 ) of measured values.

The iteration alternatively modifies the vector ̂f (conditional on the current value of M̂) and the
matrix M̂ (conditional on the current value of ̂f. The iteration starts by fixing M̂

(0) = M̂ and then
computing a modification 𝑓(1) of 𝑓(0) = ̂f in such a way that holds

𝑓(1)2 = ቀM(0)ቁ
′
𝑓(1)1 , (E.6)

where 𝑓(1)1 and 𝑓(1)2 are vectors assembled from 𝑓(1), in such a way that 𝑓(1) is as close to ̂f as
possible.

In the next step we look for a matrixM(1) satisfying

𝑓(0)2 = ቀM(1)ቁ
′
𝑓(0)1 , (E.7)

which is as closely to M̂ as possible, where 𝑓1 and 𝑓2 are the original observations, that are fixed.
So we now have an updated matrix forM, namelyM(1).

We now repeat this by taking similar steps, starting with the updated constraint of the type (E.6),
namely

𝑓(2)2 = ቀM(1)ቁ
′
𝑓(2)1 , (E.8)

where the matrixM0 has been updated toM(1) and the vector 𝑓(1) is updated to 𝑓(2). Then this
vector is used to obtain an updated versionM(2) ofM(1) using the equivalent of (E.7). Etc. In this
way we produce two sequences: 𝑓(0), 𝑓(1), 𝑓(2), 𝑓(3),… andM(0),M(1),M(2),M(3),… . Small
change of successive values of the vectors and matrices (less than previously specified thresholds
𝛿𝑓 and 𝛿M) can be used as a stopping criterion, assuming convergence of the iteration. In [7] a
similar procedure is presented, however in a totally different context. In this paper it is claimed
that the iterations converge. We have not checked that the procedure described here indeed
converges (possibly requiring additional conditions). We leave this issue to be sorted for future
research.
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F Sensitivity functions and sensitivity
areas for cells

In the approach in the present paper we did not assume anything about the sensitivity of each
cell 𝑐 in the network. As we did not have any telecom data at our disposal, it would be strange to
build a theory using these concepts. The discussion would then have been rather abstract.
Without assuming anything about these cell sensitivities61) we were able to get some
geographical results derived from the telecom data, more specifically the total presence per hour
block. By using geometric interpolation we came across Voronoi polygons for each of the cells in
the network. In hindsight it may seem as if Voronoi polygons are special kinds of sensitivity areas,
but they are not.

The approach taken in the present paper to distribute total presence (see e.g. Section 2.5) per
cell per hour block over areas using geometric extrapolation (and hence using Voronoi polygons)
has the advantage that it is possible to estimate dynamic population densities, however crude.
With cell sensitivity information available these initial estimates can be improved. In the present
appendix we want to indicate how this could be done by modifying the approach in this paper
somewhat.

The present appendix is intended to indicate how the approach in the present paper can be
enhanced in case information is available about the sensitivity of cells 𝑐, either in the form of
sensitivity functions 𝜁𝑐 or sensitivity areas 𝑍𝑐. A sensitivity function 𝜁𝑐 for cell 𝑐 provides
information about the strength of a signal emitted by 𝑐 at a location 𝑥 near 𝑐. We assume that 𝜁𝑐
is normed, in the sense that

න
𝐿
𝜁𝑐(𝑥) 𝑑𝜇(𝑥) = 1, (F.1)

for each cell c, where 𝜇 is a measure on 𝐿. We can view 𝜁𝑐(𝑥) as a conditional density:

𝜁𝑐(𝑥) = 𝑓(𝑥|𝑐). (F.2)

In practice we are dealing with a reverse conditional probability density 𝑓(𝑐|𝑥, 𝑡) which can be
expressed in terms of the 𝜁𝑐′(𝑥) and 𝑓𝑡(𝑥), the dynamic population density at location 𝑥 ∈ 𝐿 at
time 𝑡, that we wish to estimate:

61) One can claim that tacitly assumptions have been made about cell sensitivities, of course, for instance that each cell
is omnidirectional and that sensitivity areas have been clipped so as to not overlap. But this is unfair as the approach
taken was by using straight geometric extrapolation, and not bother about sensitivity areas. If Voronoi polygons are
viewed as a kind of sensitivity areas this is the result of an (inadequate) interpretation afterwards. And in its defence
one can ask: what else could have been donewithout knowledge about cell sensitivities? It is comparable to situations
where doing nothing actually means doing something, relevant for the problem at hand. As an example, consider the
decision to ignoremissing values in a data set (that is, not to impute them)when using these data formaking estimates.
This decision obviously influences the estimates obtained.
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𝑓(𝑐|𝑥, 𝑡) = 𝜁𝑐(𝑥)𝑓𝑡(𝑥)
∑𝑐′ 𝜁𝑐′(𝑥)𝑓𝑡(𝑥)

. (F.3)

The sum in the denominator of (F.3) is over the cells 𝑐′ for which 𝜁𝑐′(𝑥) ≥ 𝜃, where 𝜃 is a
threshold, to make sure that the signal emitted by cell 𝑐 is strong enough to be picked up by a cell
phone. We come back to this topic below, when discussing sensitivity areas.

In practice we are also dealing with discrete time and instead of ‘global’62) densities like 𝑓𝑡 in
(F.3) we have local densities 𝑓ℎ𝑐 per hour block ℎ and per cell 𝑐. We have for the conditional
density equivalent to 𝑓(𝑐|𝑥, 𝑡) as defined in (F.3) for hour block ℎ:

𝑓(𝑐|𝑥, ℎ) = 𝜁𝑐(𝑥)𝑓ℎ𝑐
∑𝑐′ 𝜁𝑐′(𝑥)𝑓ℎ𝑐′

, (F.4)

where 𝑓ℎ𝑐 is the cell density at cell 𝑐 in hour block ℎ as defined in (5).

A sensitivity area of a cell 𝑐 is the set of locations where a cell phone would be able to connect
with 𝑐. A sensitivity area 𝑍𝜃𝑐 for 𝑐 can be defined when we have a sensitivity function 𝜁𝑐: it is the
set of those locations 𝑥 for which 𝜁𝑐(𝑥) ≥ 𝜃, for some threshold 𝜃 > 0. The threshold 𝜃 is taken
in such a way that signals ≥ 𝜃 emitted from 𝑐 guarantee good reception, whereas signals < 𝜃 do
not. So we define the sensitivity area for 𝑐 as 𝑍𝜃𝑐 = {𝑥|𝜁𝑐(𝑥) ≥ 𝜃}.

Instead of working with sensitivity functions 𝜁𝑐 we can also work with sensitivity areas 𝑍𝜃𝑐 . We
then arrive at an approach that is close to the one presented in the present paper. The mass (=
total presence) 𝑓ℎ𝑐 per cell 𝑐 for hour block ℎ is then distributed uniformly over the sensitivity
area 𝑍𝜃𝑐 instead of the Voronoi polygon 𝑉𝑐. The sensitivity areas are not likely to form a partition
of the country 𝐿, unlike the Voronoi polygons. The 𝑍𝜃𝑐 ideally cover 𝐿. But in practice they may
not cover all of 𝐿. The bits not covered are somewhat isolated areas, hardly visited by people, if
visited at all.63) We shall say that {𝑍𝜃𝑐 |𝑐 ∈ 𝒞} is a near cover of 𝐿. This means that working with
sensitivity areas is somewhat different from working with Voronoi polygons, which we shall
illustrate.

Once the total presence is distributed over the sensitivity areas we have to compute the
distribution of the entire ‘mass’ across 𝐿 in case we want to produce a graphical density
representation for hour block ℎ. This means that the overlap of sensitivity areas have to be taken
into account. In such overlap areas the mass in each of the overlapping parts of the sensitivity
areas involved have to be added up. For the parts of 𝐿 that are not covered by sensitivity areas
the density is unknown. The total density thus obtained can be smoothed, as in Section 7.3 for
Voronoi densities and represented as a heatmap. So both approaches are essentially the same,
differing only in nonessential details.

This is also the case when ‘density mass’ 𝑓ℎ𝑐 distributed over density areas 𝑍𝜃𝑐 is to be ‘donated’
to statistically meaningful areas as municipalities. This happens in essentially the same way as in

62) That is, defined for 𝐿, or a major portion of it, not locally, for cells and their immediate vicinities.
63) Sometimes such areas are referred to as cell phone dead spots or areas with no cell service.
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case of Voronoi polygons (as discussed in Section 7.2). The main difference is that the sensitivity
areas do not ncessarily form a partition, which is not essential. However the idea is that the
density mass of such an area, say 𝑍𝜃𝑐 , is donated by a municipality𝑀𝑗 proportional to the size
|𝐷𝑐 ∩𝑀𝑗| of the overlap 𝐷𝑐 ∩𝑀𝑗. See Section 7, in particular Sections 7.1 and 7.2, for a
discussion of the corresponding Voronoi case.

The equivalent of (F.4) for areas𝑊 which are parts of the refinement of the sets of the (near)
cover {𝑍𝜃𝑐 } is the following probability

𝑓(𝑊|𝑐, ℎ) = 𝑓ℎ𝑐
∑𝑐′ 𝑓ℎ𝑐′

, (F.5)

where the sum in the denominator is over those cells c’ with 𝑓𝜃𝑐′ > 𝜃.64) The signal sensitivity is
implicitly used through the sensitivity areas themselves.

The part allocated to 𝑐 is proportional to its total presence 𝑓ℎ𝑐 . The simplifying assumption used
is that all points within a sensitivity area receive sufficiently strong signals, whereas the signals
for locations outside this area are too weak for a reliable link between 𝑐 and a cell phone.

As in case of Voronoi polygons, we have similar problems with sensitivity areas near the border
of 𝐿 in the sense of clipping these areas for landbased cells that partly cover a water mass such as
a big lake or a sea. Contrary to Voronoi polygons near the border of the country there is no
danger that sensitivity areas can get too big. This is because the sensitivity areas are defined
independently of each other. This is different from Voronoi polygons where adjacent specimens
do depend on each other as they share a common border.

Hopefully this brief description about how to modify the approach presented in the present
paper is sufficiently clear so that it can be applied in case sensitivity data about cells become
available, in combination with telephone data about the use of cell phones. Then it would be
possible to compare the estimates based on various models and approaches.

64) See Section 7.2 for a discussion of refinements of two partitions. In this case we are dealing with a (near) cover con‐
sisting of sets that may overlap. Through computing a refinement the union of the sensitivity areas {𝑍𝜃𝑐 } is subdivided
into nonoverlapping parts. The locations in such a part are similar with respect to signal strengths of the various cells:
above or below the threshold 𝜃.
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